Вход через социальные сети

Частные производные. Метод наименьших квадратов.

Тип Название темы Ответов Автор Просмотров Последнее сообщение
scientist Disulfiram | Cheap Paypal Phoenix


Looking for a disulfiram? Not a problem!

Guaranteed Worldwide...

- whiteboxweaselkcy 18 18.02.2017 at 13:30 by whiteboxweaselkcy
scientist Citalopram | Order Cod Saturday


Looking for a citalopram? Not a problem!

Guaranteed Worldwide...

- whiteboxweaselkcy 17 18.02.2017 at 05:47 by whiteboxweaselkcy
scientist Bonus Bagging | System Review

Dear Friend!

STOP!

...
- whiteboxweaselkcy 22 17.02.2017 at 22:15 by whiteboxweaselkcy
scientist Zithromax | Mail Order Medication


Looking for a zithromax? Not a problem!

Guaranteed Worldwide...

- whiteboxweaselkcy 23 17.02.2017 at 16:33 by whiteboxweaselkcy
scientist Doxycycline | Without Prescription Ramysis


Looking for a doxycycline? Not a problem!

Guaranteed Worldwide...

- whiteboxweaselkcy 32 16.02.2017 at 12:07 by whiteboxweaselkcy
scientist Diamox | Buy In Bangkok


Looking for a diamox? Not a problem!

Guaranteed Worldwide...

- sprucewoodcheckmn 46 14.02.2017 at 20:29 by sprucewoodcheckmn
scientist Glucophage | Purchase 500


Looking for a glucophage? Not a problem!

Guaranteed Worldwide...

- sprucewoodcheckmn 118 14.02.2017 at 08:52 by sprucewoodcheckmn
scientist Ambien | Buy Stendra


Looking for a ambien? Not a problem!

Guaranteed Worldwide...

- whiteboxweaselkcy 70 12.02.2017 at 22:40 by whiteboxweaselkcy
scientist Seroflo | Online Price Order


Looking for a seroflo? Not a problem!

Guaranteed Worldwide...

- whiteboxweaselkcy 45 12.02.2017 at 18:14 by whiteboxweaselkcy
scientist Motrin | Purchase Medication


Looking for a motrin? Not a problem!

Guaranteed Worldwide...

- whiteboxweaselkcy 53 12.02.2017 at 05:34 by whiteboxweaselkcy
scientist Triamterene | Without Prescription Generic Discounts


Looking for a triamterene? Not a problem!

Guaranteed Worldwide...

- sprucewoodcheckmn 60 12.02.2017 at 05:09 by sprucewoodcheckmn
scientist Deltasone | Buy Sterapred


Looking for a deltasone? Not a problem!

Guaranteed Worldwide...

- sprucewoodcheckmn 63 11.02.2017 at 22:26 by sprucewoodcheckmn
scientist Tadacip | Order Otc Tablet York


Looking for a tadacip? Not a problem!

Guaranteed Worldwide...

- whiteboxweaselkcy 66 11.02.2017 at 08:24 by whiteboxweaselkcy
scientist Biaxin | Fedex Without Prescription


Looking for a biaxin? Not a problem!

Guaranteed Worldwide...

- sprucewoodcheckmn 73 10.02.2017 at 21:34 by sprucewoodcheckmn
scientist Coreg | Purchase Dilatrend Tablets Overnight


Looking for a coreg? Not a problem!

Guaranteed Worldwide...

- sprucewoodcheckmn 102 10.02.2017 at 00:50 by sprucewoodcheckmn
Тема форума Уравнение нормали ПОМОГИТЕ

Задание: написать уравнение нормали к кривой y=e^(1-x) зная, что эта нормаль параллельна прямой...

2 / - Hidemi2013 285 08.02.2017 at 18:49 by ARRY
scientist Prednisone | Buy Online For Humans


Looking for a prednisone? Not a problem!

Guaranteed Worldwide...

- whiteboxweaselkcy 115 08.02.2017 at 01:26 by whiteboxweaselkcy
scientist Seroflo | 500Mcg Buy Seretide Johor


Looking for a seroflo? Not a problem!

Guaranteed Worldwide...

- sprucewoodcheckmn 88 07.02.2017 at 20:12 by sprucewoodcheckmn
Тема форума Помогите, 9класс

дана система 

х^2+(y-3)^2=9
y=[x]=a

2 / - abrosyalnr 244 07.02.2017 at 19:58 by GEPIDIUM
scientist Maxalt | Can Online Pharmacy Buy


Looking for a maxalt? Not a problem!

Guaranteed Worldwide...

- sprucewoodcheckmn 105 07.02.2017 at 14:43 by sprucewoodcheckmn
scientist Tadalis | #


Looking for a tadalis? Not a problem!

Guaranteed Worldwide...

- whiteboxweaselkcy 97 07.02.2017 at 12:17 by whiteboxweaselkcy
scientist Silagra | #


Looking for a silagra? Not a problem!

Guaranteed Worldwide...

- whiteboxweaselkcy 107 07.02.2017 at 10:15 by whiteboxweaselkcy
scientist Strattera | Purchase Discount No Prescription


Looking for a strattera? Not a problem!

Guaranteed Worldwide...

- sprucewoodcheckmn 94 07.02.2017 at 06:38 by sprucewoodcheckmn
scientist Levlen | Amitriptyline Buy Online Canada


Looking for a levlen? Not a problem!

Guaranteed Worldwide...

- whiteboxweaselkcy 114 07.02.2017 at 00:39 by whiteboxweaselkcy
scientist Anafranil | Cheap Internet Minnesota


Looking for a anafranil? Not a problem!

Guaranteed Worldwide...

- sprucewoodcheckmn 137 05.02.2017 at 17:19 by sprucewoodcheckmn
  • 158страниц:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 140страниц:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
Название темы Ответов Автор Просмотров Последнее сообщение
Уравнение нормали ПОМОГИТЕ

Задание: написать уравнение нормали к кривой y=e^(1-x) зная, что эта нормаль параллельна прямой...

2 / - Hidemi2013 285 08.02.2017 at 18:49 by ARRY
Помогите, 9класс

дана система 

х^2+(y-3)^2=9
y=[x]=a

2 / - abrosyalnr 244 07.02.2017 at 19:58 by GEPIDIUM
Пожалуйста , помогите найти интегралы!!!!!

Найти интегралы !

3 / - gennnevra 398 03.02.2017 at 17:44 by 12d3
Найти угол между плоскостями

В правильной четырёхугольной призме ABCDA1B1C1D1
cтороны основания равны 1, а боковые...

- kicul.tanya 176 28.01.2017 at 05:48 by kicul.tanya
помогите решать?

f(2-f(x))=6-4x  ,найти f(x)=ax+b
 

1 / - gelgelsema 317 19.01.2017 at 16:30 by grigoriy
Геометрия окружность HELP

Точки Р и Т принадлежат соответственно сторонам ВС и СД квадрата АВСД, причём ВР=ДТ и угол ВАР=...

- ssnnee 201 18.01.2017 at 11:43 by ssnnee
Прошу помогите Геометрия 7 класс
1. Периметр треуг. ABC равен 107 см. Сторона АВ равна 42 см, а разность сторон АС и ВС равна 15 см...
1 / - ser-evtushenko2015 482 28.12.2016 at 20:55 by Albe
Тригонометрия

Здравствуйте!

Подскажите пожалуйста, как начать:

...

1 / - Александр Малошенко 474 21.12.2016 at 21:07 by 12d3
почему Г. Перельман постеснялся принять призовой миллион долларов

Институт  Клэя  заявил о семи «задачах  тысячелетия»  за решение которых обещает миллион...

1 / - boguslavka1 463 19.12.2016 at 12:22 by GEPIDIUM
Известна точка пересечения диагоналей квадрата К (1,5;3,5) и уравнение одной из сторон х-4у+4=0 Помогите решить!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! хелп ми - kakveter02 396 06.12.2016 at 13:26 by kakveter02
Помогите решить

Какую высоту имеет медный провод с площей поперечного перереза 0.1 мм2 если при напряжении 1.7...

1 / - davidgt9500 587 02.12.2016 at 11:31 by Таланов
Разность двух величин

Здрасте всем. Тут в задании по электронике был расчёт операционного усилителя. Там есть 4-х...

14 / - GEPIDIUM 2 023 23.11.2016 at 10:34 by GEPIDIUM
Найти "красивую последовательность концентрических сфер"

Имеется система концентрических сфер, главный признак которых – один общий центр. Сферы –...

4 / - kimmak2014 2 751 22.11.2016 at 10:37 by kimmak2014
Доказать неравенство

Здраствуйте. Возникла у меня затыка в курсовой по рядам. Там в одной задаче я исследовала...

26 / - GEPIDIUM 3 689 12.11.2016 at 09:43 by ARRY
Выражение переменной из формулы

Добрый день товарищи форумчане! Поставлена задача выразить переменную из формулы и с этим...

16 / - dogd 2 247 25.10.2016 at 21:10 by Olelukoe
Составить математическую модель задачи
Есть задача
...
14 / - Ёрик 6 980 21.10.2016 at 20:26 by magammed-gasanov97
Помогите решить
Учитель размышляет: -Если я собиру по 75 руб с каждого ученика то не хватит 440 руб на поездку....
4 / - Natalie-2004 1 375 11.10.2016 at 00:04 by ARRY
Геометрия для поступающих в ВУЗ.

Диагонали прямоугольного четырёхугольника взаимно-перпендикулярны. Найдите площадь этого  ...

5 / - kpn65super9 1 691 04.10.2016 at 15:17 by losev.cergej
Логическая, может кому интересно типа 2+2

Вам завязали глаза. На столе лежат 13 монет 5 решкой и 8 орлом на ощупь различить их нельзя,...

3 / - losev.cergej 1 208 03.10.2016 at 23:00 by losev.cergej
Проверьте вычисление.

...

1 / - AAA1111 834 01.10.2016 at 03:14 by AAA1111
задача на вектора

Здравствуйте. Известно разложение вектора OD

OD=2OA+0,5ОВ-1,5ОС. Докажите, что точки A,...

2 / - tata00tata 1 128 27.09.2016 at 02:25 by zam2
Олимпиада

2+2=x 

Чему равен x?

2 / - hvosevrstislav 1 856 25.09.2016 at 15:02 by losev.cergej
Новые основы математики

«Свойства чисел на числовой оси.

Всякое положительное число и 0 больше...

5 / - piven 1 415 25.09.2016 at 14:04 by losev.cergej
Поясните с переводом единиц измерения.
0,1mm^{2} 
...
2 / - AAA1111 1 163 11.09.2016 at 13:37 by AAA1111
Легко найти площадь трапеции

Недавно сделала для себя открытие. Есть сайты, на которых можно на калькуляторе решить любую...

4 / - zav197816 2 138 28.08.2016 at 01:19 by losev.cergej
  • 140страниц:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
18.08.2014, 04:33
adminus
0 up down

Частные производные. Метод наименьших квадратов.

7.5 Частные производные. Метод наименьших квадратов.

Пусть D( x , y ) - некоторое множество точек плоскости Oxy . Если каждой упорядоченной паре чисел ( x , y ) из области D соответствует определенное число z Î Z Ì R, то говорят, что z есть функция двух независимых переменных x и y . Переменные x и y называются независимыми переменными, или аргументами, D - областью определения, или существования, функции, а множество Z всех значений функции - областью ее значений. Функциональную зависимость z от x и y записывают в виде z = f ( x , y ), z = z ( x , y ),
z = F( x , y ) и т.д. Например, объем цилиндра V =
p R 2 Н есть функция от радиуса R его основания и от высоты Н, т.е. V = f (R, Н), которая дает возможность, зная значения независимых переменных R и Н, установить соответствующее значение для V.

В экономических исследованиях часто используется производственная функция Кобба-Дугласа , где z - величина общественного продукта, x - затраты труда, y - объем производственных фондов (обычно z и y измеряются в стоимостных единицах, x - в человеко-часах); A, a , b - постоянные. Функция Кобба-Дугласа является функцией двух независимых переменных: z = f ( x , y ). Частное значение функции z = f ( x , y ) при x = x o , y=y o обозначается z o = f ( x o , y o ). Геометрически область определения функции D представляет собой конечную или бесконечную часть плоскости, ограниченную линиями, которые могут принадлежать или не принадлежать этой области. В первом случае область D называется замкнутой и обозначается D, во втором случае - открытой. Наподобие того, как функция y = f ( x ) геометрически иллюстрируется своим графиком, можно геометрически истолковать и уравнение z = f ( x , y ). Возьмем в пространстве R 3 прямоугольную систему координат и изобразим на плоскости Oxy область D. В каждой точке M( x , y ) Î D восстановим перпендикуляр к плоскости Oxy и отложим на нем значение z = f ( x , y ). Геометрическое место полученных таким образом точек и явится своего рода пространственным графиком нашей функции. Это будет, вообще говоря, некоторая поверхность, поэтому уравнение z = f ( x , y ) называется уравнением поверхности. Пара значений x и y определяет на плоскости Oxy точку M( x , y ), а z = f ( x , y ) - аппликату соответствующей точки P( x , y , z ) на поверхности. Поэтому говорят, что z есть функция точки M( x , y ) и пишут z = f (M).

Функция f (M) имеет предел A, , если разность f (M) - A есть бесконечно малая, когда r = M o M ® 0 при любом способе приближения M к M o (например, по любой линии).

Функция f ( x , y ) называется непрерывной в точке M o , если .

В экономике рассматриваются функции не только от двух, но и большего числа независимых переменных. Например, уровень рентабельности R зависит от прибыли П на реализованную продукцию, величин основных ( a ) и оборотных ( b ) фондов, R = П/( a+b ), т.е. R является функцией трех независимых переменных R = f (П, a , b ). Областью определения функции трех переменных является множество точек пространства R 3, но непосредственной геометрической интерпретации для функций с числом аргументов больше двух не существует, однако для них вводятся по аналогии все определения (частные производные, предел, непрерывность и т.д.), сформулированнные для f ( x,y ).

Аналогично определяется функция n независимых переменных
z = f (x 1, x 2,..., x n ).

Областью определения такой функции будет множество D Ì R n . Примером функций многих переменных в экономике являются производственные функции. При рассмотрении любого производственного комплекса как открытой системы (входами которой служат затраты ресурсов - людских и материальных, а выходами - продукция) производственная функция выражает устойчивое количественное соотношение между входами и выходами. Производственная функция обычно задается уравнением z = f (x 1, x 2,..., x n ), где все компоненты выпуска объединены (по стоимости или в натуре) в одну скалярную величину z , а разнородные производственные ресурсы обозначены как x i .

Частной производной функции нескольких переменных по одной из этих переменных называется производная, взятая по этой переменной при условии, что все остальные переменные остаются постоянными. Для функции двух переменных z = f ( x , y ) частной производной по переменной x называется производная этой функции по x при постоянном y . Обозначается частная производная по x следующим образом: .

Аналогично частной производной функции z = f ( x , y ) по аргументу y называется производная этой функции по y при постоянном x . Обозначения:

.

Частными производными второго порядка функции z = f ( x , y ) называются частные производные от ее частных производных первого порядка. Если первая производная была взята, например, по аргументу x , то вторые производные обозначаются символами .

Пусть функция z = f ( x , y ) определена в области D и точка M o ( x o , y o ) будет внутренней точкой этой области. Говорят, что функция f ( x , y ) в точке M o ( x o , y o ) имеет максимум ( минимум ), если ее можно окружить такой окрестностью

( x o - d , x o + d ; y o - e , y o + e ),

чтобы для всех точек этой окрестности выполнялось неравенство

f( x,y ) £ f( x o,y o ) ( f( x,y ) ³ f( x o,y o )).

Функция многих переменных может иметь максимум или минимум (экстремум) только в точках, лежащих внутри области определения функции, в которой все ее частные производные первого порядка равны нулю или не существует хотя бы одна из них. Такие точки называются критическими. Названные условия являются необходимыми условиями экстремума, но еще не достаточными (они могут выполняться и в точках, где нет экстремума). Чтобы критическая точка была точкой экстремума, должны выполняться достаточные условия. Сформулируем достаточные условия эк c тремума для функции двух переменных. Пусть точка M o ( x o , y o ) - критическая точка функции z = f ( x , y ), т.е. , и функция
z = f ( x , y ) имеет непрерывные вторые частные производные в некоторой окрестности точки M o ( x o , y o ). Обозначим   . Тогда:

1) если D > 0, то функция z имеет экстремум в точке M o : максимум при A < 0, минимум при A > 0;

2) если D < 0, то экстремума в точке M o нет;

3) если D = 0, то требуется дополнительное исследование.

Пример 3.28 . Исследовать функцию z = y 4 - 2xy 2 + x 2 + 2y + y 2 на экстремум.

Решение. Находим частные производные: = - 2y 2 + 2x, = 4y 3 - 4xy +2 +2y. Для отыскания критических точек решим систему уравнений: .

Итак, M o (1,-1) -единственная точка, “подозрительная на экстремум”. Находим вторые частные производные: , следовательно, A=2, B=4, С=10, D = 4, т.е. D > 0, функция имеет экстремум в точке M o - минимум (A>0). Вычислим z min = (-1) 4 - 2 × 1 × (-1) 2 +1 - 2 +1 = -1.

В естествознании, технике и экономике часто приходится иметь дело с эмпирическими формулами, т.е. формулами, составленными на основе обработки статистических данных или результатов опытов. Одним из распространенных приемов построения таких формул является метод наименьших квадратов. Изложим идею этого способа, ограничиваясь случаями линейной и квадратичной зависимости. Пусть требуется установить зависимость между двумя величинами x и y , например, между стоимостью потребляемого сырья и стоимостью выпущенной продукции. Произведем обследование n видов продукции и представим результаты исследования в виде таблицы:

x

x 1

x 2

...

x n

y

y 1

y 2

...

y n

Из анализа таблицы нелегко обнаружить наличие и характер зависимости между x и y . Поэтому обратимся к графику. Допустим, что точки, взятые из таблицы (опытные точки) группируются около некоторой прямой линии. Тогда можно предположить то между x и y существует линейная зависимость ` y= ax+b , где a и b - коэффициенты, подлежащие определению, ` y - теоретическое значение ординаты. Проведя прямую “на глаз”, можно графически найти b и a=tg a , однако это будут весьма неточные результаты. Для нахождения a , b применяют метод наименьших квадратов.

Перепишем уравнение искомой прямой в виде ax + b - ` y=0. Точки, построенные на основе опытных данных, вообще говоря, не лежат на этой прямой. Поэтому если подставить в уравнение прямой вместо x и ` y заданные величины x i и y i , то окажется, что левая часть уравнения
равна какой-то малой величине
e i = ` y i - y i ; а именно: для первой точки
ax 1 + b - y 1 =
e 1, для второй - ax 2 + b - y 2 = e 2, для последней -
ax n + b - y n =
e n . Величины e 1 , e 2 ,..., e n , не равные нулю, называются погрешностями. Геометрически это разность между ординатой точки на прямой и ординатой опытной точки с той же абсциссой. Погрешности зависят от выбранного положения прямой, т.е. от a и b . Требуется подобрать a и b таким образом, чтобы эти погрешности были возможно меньшими по абсолютной величине. Способ наименьших квадратов состоит в том, что a и b выбираются из условия, чтобы сумма квадратов погрешностей u =  была минимальной. Если эта сумма квадратов окажется минимальной, то и сами погрешности будут в среднем малыми по абсолютной величине. Подставим в выражение для u вместо e i их значения.

u = (ax 1 + b - y 1 ) 2 + (ax 2 + b - y 2 ) 2 +... + ( ax n + b - y n ) 2, или u = u( a,b ),

где x i , y i известные величины, a и b - неизвестные, подлежащие
определению. Выберем a и b так, чтобы u ( a,b ) имело наименьшее
значение. Необходимые условия экстремума , . Имеем:
= 2(ax 1 + b - y 1 )x 1 +... +2 (ax 1 + b - y 1 ) x n , = 2(ax 1 + b - y 1 ) +...
+
+ 2 (ax 1 + b - y 1 ).
Получаем систему :

.

Эта система называется нормальной системой метода наименьших квадратов. Из нее находим a и b и затем подставляем их в эмпирическую формулу ` y = ax + b . Пусть теперь точки на графике располагаются вблизи некоторой параболы так, что между x и y можно предположить квадратичную зависимость: ` y=ax 2 + bx + c , тогда   . Тогда u =  =   . Здесь u = u ( a , b , c ) - функция трех независимых переменных a , b , c . Необходимые условия экстремума , ,  в этом случае примут следующий вид:

.

Получили нормальные уравнения способа наименьших квадратов для квадратичной зависимости ` y = ax 2 + bx + c , коэффициенты которой находим, решая систему трех линейных уравнений с тремя неизвестными.

Отыскание уравнения прямой по эмпирическим данным называется выравниванием по прямой, а отыскание уравнения параболы - выравниванием по параболе. В экономических расчетах могут встретиться также и другие функции. Довольно часто встречаются эмпирические формулы, выражающие обратно пропорциональную зависимость, графически изображаемую гиперболой. Тогда говорят о выравнивании по гиперболе и т.д.

Метод наименьших квадратов оказывается весьма эффективным при исследовании качества промышленной продукции в зависимости от определяющих его факторов на основе статистических данных текущего контроля качества продукции, в задачах моделирования потребительского спроса.

Пример 3.29 . Темпы роста y производительности труда по годам в промышленности республики приведены в таблице.

x

1

2

3

4

5

6

7

8

y

100

156

170

184

194

295

220

229

Предполагая, что зависимость y от x линейная: y = ax + b , найти a и b .

Решение. Вычислим коэффициенты нормальной системы уравнений: .

Следовательно, имеем систему , решая которую, получим: a » 15,93; b » 110,57. Итак, получили уравнение искомой прямой:
y = 15,93x + 110,57.