Вход через социальные сети

Уравнения прямых и кривых на плоскости

Тип Название темы Ответов Автор Просмотров Последнее сообщение
scientist Buspar | Order Online


Looking for a buspar? Not a problem!

Guaranteed Worldwide...

- groanstrawln 1 25.04.2017 at 13:15 by groanstrawln
scientist Celexa | Purchase


Looking for a celexa? Not a problem!

Guaranteed Worldwide...

- produtobutteryzt 1 25.04.2017 at 13:14 by produtobutteryzt
scientist Abilify | Purchase Medication


Looking for a abilify? Not a problem!

Guaranteed Worldwide...

- sprucewoodcheckmn 1 25.04.2017 at 11:44 by sprucewoodcheckmn
scientist Abilify | Buy Online Uk


Looking for a abilify? Not a problem!

Guaranteed Worldwide...

- sprucewoodcheckmn 2 25.04.2017 at 10:15 by sprucewoodcheckmn
scientist Reminyl | Order Tablets


Looking for a reminyl? Not a problem!

Guaranteed Worldwide...

- groanstrawln 1 25.04.2017 at 09:10 by groanstrawln
scientist Cyklokapron | Buy Package


Looking for a cyklokapron? Not a problem!

Guaranteed Worldwide...

- produtobutteryzt 1 25.04.2017 at 06:32 by produtobutteryzt
scientist Enalapril | Buy 10 Mg


Looking for a enalapril? Not a problem!

Guaranteed Worldwide...

- paleanglodvo 1 25.04.2017 at 04:51 by paleanglodvo
scientist Minocycline | Purchase Hydrochloride


Looking for a minocycline? Not a problem!

Guaranteed Worldwide...

- sprucewoodcheckmn 1 25.04.2017 at 03:53 by sprucewoodcheckmn
scientist Ibuprofen | Buy 400 Mg


Looking for a ibuprofen? Not a problem!

Guaranteed Worldwide...

- produtobutteryzt 2 25.04.2017 at 02:18 by produtobutteryzt
scientist Tamoxifen | Buy Cheap Uk


Looking for a tamoxifen? Not a problem!

Guaranteed Worldwide...

- paleanglodvo 3 24.04.2017 at 23:53 by paleanglodvo
scientist Lisinopril | Cheap Price


Looking for a lisinopril? Not a problem!

Guaranteed Worldwide...

- paleanglodvo 4 24.04.2017 at 22:36 by paleanglodvo
scientist Elimite | Buy Cream Online


Looking for a elimite? Not a problem!

Guaranteed Worldwide...

- sprucewoodcheckmn 4 24.04.2017 at 22:19 by sprucewoodcheckmn
scientist Abilify | Buy Online Usa


Looking for a abilify? Not a problem!

Guaranteed Worldwide...

- groanstrawln 5 24.04.2017 at 17:24 by groanstrawln
scientist Paroxetine | Purchase


Looking for a paroxetine? Not a problem!

Guaranteed Worldwide...

- sprucewoodcheckmn 5 24.04.2017 at 17:05 by sprucewoodcheckmn
scientist Flomax | Buy On-Line


Looking for a flomax? Not a problem!

Guaranteed Worldwide...

- produtobutteryzt 7 24.04.2017 at 09:45 by produtobutteryzt
scientist Floxin | Buy Online


Looking for a floxin? Not a problem!

Guaranteed Worldwide...

- sprucewoodcheckmn 6 24.04.2017 at 07:08 by sprucewoodcheckmn
scientist Lamictal | Purchase Online


Looking for a lamictal? Not a problem!

Guaranteed Worldwide...

- sprucewoodcheckmn 8 24.04.2017 at 05:45 by sprucewoodcheckmn
scientist Trimox | Buy Online


Looking for a trimox? Not a problem!

Guaranteed Worldwide...

- paleanglodvo 6 24.04.2017 at 03:03 by paleanglodvo
scientist Decadron | Purchase Withdrawal Symptoms


Looking for a decadron? Not a problem!

Guaranteed Worldwide...

- groanstrawln 12 24.04.2017 at 00:57 by groanstrawln
scientist Zenegra | Buy Online Uk


Looking for a zenegra? Not a problem!

Guaranteed Worldwide...

- groanstrawln 8 24.04.2017 at 00:04 by groanstrawln
scientist Stromectol | To Buy


Looking for a stromectol? Not a problem!

Guaranteed Worldwide...

- groanstrawln 9 23.04.2017 at 22:44 by groanstrawln
scientist Elavil | Ourmeds Order Antidepressants Products


Looking for a elavil? Not a problem!

Guaranteed Worldwide...

- produtobutteryzt 10 23.04.2017 at 21:19 by produtobutteryzt
scientist Dramamine | Buy Online Australia


Looking for a dramamine? Not a problem!

Guaranteed Worldwide...

- paleanglodvo 9 23.04.2017 at 19:11 by paleanglodvo
scientist Levlen | Purchase 28


Looking for a levlen? Not a problem!

Guaranteed Worldwide...

- paleanglodvo 11 23.04.2017 at 19:11 by paleanglodvo
scientist Dapoxetine | Buy Online Canada


Looking for a dapoxetine? Not a problem!

Guaranteed Worldwide...

- groanstrawln 9 23.04.2017 at 17:43 by groanstrawln
  • 168страниц:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 141страниц:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
Название темы Ответов Автор Просмотров Последнее сообщение
решение задач по геометрии

Помогите решить задачи:

1.Даны вершины треугольника АВС А(2;1),В(-1;-1),С(3;2).Составить...

- shea11 86 20.04.2017 at 19:47 by shea11
Помоготе решить

В саду вишнёвых деревьев на 63 меньше, чем сливовых, а яблонь на 144 больше, чем слив. Сколько...

- Zvilkovskaya 94 18.04.2017 at 18:19 by Zvilkovskaya
Помогите составить уравнение линии, для каждой точки которой расстояние до точки F(3;3) равно расстоянию до прямой у=-2 . Сделать чертеж

Помогите хелп!составить уравнение линии, для каждой точки которой расстояние до точки F(3;3)...

1 / - any_times 225 15.04.2017 at 13:35 by ARRY
О доказательстве пятого постулата Евклида

Спешу сообщить - я доказал пятый постулат Евклида. Сегодня отправил доказательство известным...

19 / - viksan31 1 873 03.04.2017 at 12:50 by viksan31
олимпийские задания

Задания олимпиад разных лет http://пятьколец.рф

- radrad 329 14.03.2017 at 20:34 by radrad
Диагностическая работа 6 с5

Как доказать √(1953^200-4*1995^100) ирациональное число.

- dregonh 299 12.03.2017 at 16:09 by dregonh
Помогите решить для 4 класса
Дополни решение задачи по действиям, с пояснениями. Вычисли и запиши ответ. Из двух городов...
26 / - xitraya.ya 2 987 09.03.2017 at 23:09 by Студентс
Алгебра. 8 класс.

Подскажите, как решать квадратичные уравнения, никак не могу понять.
 

- mikhailova.280 438 02.03.2017 at 08:32 by mikhailova.280
Уравнение нормали ПОМОГИТЕ

Задание: написать уравнение нормали к кривой y=e^(1-x) зная, что эта нормаль параллельна прямой...

2 / - Hidemi2013 867 08.02.2017 at 18:49 by ARRY
Помогите, 9класс

дана система 

х^2+(y-3)^2=9
y=[x]=a

2 / - abrosyalnr 866 07.02.2017 at 19:58 by GEPIDIUM
Пожалуйста , помогите найти интегралы!!!!!

Найти интегралы !

3 / - gennnevra 1 071 03.02.2017 at 17:44 by 12d3
Найти угол между плоскостями

В правильной четырёхугольной призме ABCDA1B1C1D1
cтороны основания равны 1, а боковые...

- kicul.tanya 581 28.01.2017 at 05:48 by kicul.tanya
помогите решать?

f(2-f(x))=6-4x  ,найти f(x)=ax+b
 

1 / - gelgelsema 781 19.01.2017 at 16:30 by grigoriy
Геометрия окружность HELP

Точки Р и Т принадлежат соответственно сторонам ВС и СД квадрата АВСД, причём ВР=ДТ и угол ВАР=...

- ssnnee 573 18.01.2017 at 11:43 by ssnnee
Прошу помогите Геометрия 7 класс
1. Периметр треуг. ABC равен 107 см. Сторона АВ равна 42 см, а разность сторон АС и ВС равна 15 см...
1 / - ser-evtushenko2015 1 015 28.12.2016 at 20:55 by Albe
Тригонометрия

Здравствуйте!

Подскажите пожалуйста, как начать:

...

1 / - Александр Малошенко 1 049 21.12.2016 at 21:07 by 12d3
почему Г. Перельман постеснялся принять призовой миллион долларов

Институт  Клэя  заявил о семи «задачах  тысячелетия»  за решение которых обещает миллион...

1 / - boguslavka1 956 19.12.2016 at 12:22 by GEPIDIUM
Известна точка пересечения диагоналей квадрата К (1,5;3,5) и уравнение одной из сторон х-4у+4=0 Помогите решить!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! хелп ми - kakveter02 820 06.12.2016 at 13:26 by kakveter02
Помогите решить

Какую высоту имеет медный провод с площей поперечного перереза 0.1 мм2 если при напряжении 1.7...

1 / - davidgt9500 1 125 02.12.2016 at 11:31 by Таланов
Разность двух величин

Здрасте всем. Тут в задании по электронике был расчёт операционного усилителя. Там есть 4-х...

14 / - GEPIDIUM 3 506 23.11.2016 at 10:34 by GEPIDIUM
Найти "красивую последовательность концентрических сфер"

Имеется система концентрических сфер, главный признак которых – один общий центр. Сферы –...

4 / - kimmak2014 3 606 22.11.2016 at 10:37 by kimmak2014
Доказать неравенство

Здраствуйте. Возникла у меня затыка в курсовой по рядам. Там в одной задаче я исследовала...

26 / - GEPIDIUM 5 986 12.11.2016 at 09:43 by ARRY
Выражение переменной из формулы

Добрый день товарищи форумчане! Поставлена задача выразить переменную из формулы и с этим...

16 / - dogd 3 699 25.10.2016 at 21:10 by Olelukoe
Составить математическую модель задачи
Есть задача
...
14 / - Ёрик 9 147 21.10.2016 at 20:26 by magammed-gasanov97
Помогите решить
Учитель размышляет: -Если я собиру по 75 руб с каждого ученика то не хватит 440 руб на поездку....
4 / - Natalie-2004 2 254 11.10.2016 at 00:04 by ARRY
  • 141страниц:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
18.08.2014, 04:32
adminus
-1 up down

Уравнения прямых и кривых на плоскости

2.Уравнения прямых и кривых на плоскости

Уравнения кривых в большом количестве встречаются при чтении экономической литературы.Укажем некоторые из этих кривых.

Кривая безразличия - кривая, показывающая различные комбинации двух продуктов, имеющих одинаковое потребительское значение, или полезность, для потребителя.

Кривая потребительского бюджета - кривая, показывающая различные комбинации количеств двух товаров, которые потребитель может купить при данном уровне его денежного дохода.

Кривая производственных возможностей - кривая, показывающая различные комбинации двух товаров или услуг, которые могут быть произведены в условиях полной занятости и полного объема производства в экономике с постоянными запасами ресурсов и неизменной технологией.

Кривая инвестиционного спроса - кривая, показывающая динамику процентной ставки и объем инвестиций при разных процентных ставках.

Кривая Филлипса - кривая, показывающая существование устойчивой связи между уровнем безработицы и уровнем инфляции.

Кривая Лаффера - кривая, показывающая связь между ставками налогов и налоговыми поступлениями, выявляющая такую налоговую ставку, при которой налоговые поступления достигают максимума.

Уже простое перечисление терминов показывает, как важно для экономистов умение строить графики и анализировать уравнения кривых, каковыми являются прямые линии и кривые второго порядка - окружность, эллипс, гипербола, парабола. Кроме того, при решении большого класса задач требуется выделить на плоскости область, ограниченную какими-либо кривыми, уравнения которых заданы.Чаще всего эти задачи формулируются так: найти наилучший план производства при заданных ресурсах. Задание ресурсов имеет обычно вид неравенств, уравнения которых даны. Поэтому приходится искать наибольшее или наименьшее значения, принимаемые некоторой функцией в области, заданной уравнениями системы неравенств.

В аналитической геометрии линия на плоскости определяется как множество точек, координаты которых удовлетворяют уравнению F(x,y)=0. При этом на функцию F должны быть наложены ограничения так, чтобы, с одной стороны, это уравнение имело бесконечное множество решений и, с другой стороны, чтобы это множество решений не заполняло “куска плоскости”. Важный класс линий составляют те, для которых функция F(x,y) есть многочлен от двух переменных, в этом случае линия, определяемая уравнением F(x,y)=0, называется алгебраической. Алгебраические линии, задаваемые уравнением первой степени, cуть прямые. Уравнение второй степени, имеющее бесконечное множество решений, определяет эллипс, гиперболу, параболу или линию, распадающуюся на две прямые.

Пусть на плоскости задана прямоугольная декартова система координат. Прямая на плоскости может быть задана одним из уравнений:

1 0. Общее уравнение прямой:

Ax + By + C = 0.                                                           (2.1)

Вектор n (А,В) ортогонален прямой, числа A и B одновременно не равны нулю.

2 0. Уравнение прямой с угловым коэффициентом:

y - y o = k (x - x o ),                                                          (2.2)

где k - угловой коэффициент прямой, то есть k = tg a , где a - величина угла, образованного прямой с осью Оx, M (x o, y o ) - некоторая точка, принадлежащая прямой.

Уравнение (2.2) принимает вид y = kx + b, если M (0, b) есть точка пересечения прямой с осью Оy.

3 0. Уравнение прямой в отрезках:

x/a + y/b = 1,                                                       (2.3)

где a и b - величины отрезков, отсекаемых прямой на осях координат.

4 0. Уравнение прямой, проходящей через две данные точки -  A(x 1, y 1 ) и B(x 2, y 2 ):

уравнения.                                                       (2.4)

5 0. Уравнение прямой, проходящей через данную точку A(x 1, y 1 ) параллельно данному вектору a (m, n):

уравнение.                                                       (2.5)

6 0. Нормальное уравнение прямой:

rn о - р = 0,                                                             (2.6)

где r - радиус-вектор произвольной точки M(x, y) этой прямой, n о - единичный вектор, ортогональный этой прямой и направленный от начала координат к прямой; р - расстояние от начала координат до прямой.

Нормальное уравнение прямой в координатной форме имеет вид:

x cos a + y sin a - р = 0,

где a - величина угла, образованного прямой с осью Оx.

Уравнение пучка прямых с центром в точке А(x 1, y 1 ) имеет вид:

y-y 1 = l (x-x 1 ),

где l - параметр пучка. Если пучок задается двумя пересекающимися прямыми A 1 x + B 1 y + C 1 = 0, A 2 x + B 2 y + C 2 = 0, то его уравнение имеет вид:

l (A 1 x + B 1 y + C 1 ) + m (A 2 x + B 2 y + C 2 )=0,

где l и m - параметры пучка, не обращающиеся в 0 одновременно.

Величина угла между прямыми y = kx + b и y = k 1 x + b 1 задается формулой:

tg j = уравнение.

Равенство 1 + k 1 k = 0 есть необходимое и достаточное условие перпендикулярности прямых.

Для того, чтобы два уравнения

A 1 x + B 1 y + C 1 = 0,                                                       (2.7)

A 2 x + B 2 y + C 2 = 0,                                                      (2.8)

задавали одну и ту же прямую, необходимо и достаточно, чтобы их коэффициенты были пропорциональны:

A 1 /A 2 = B 1 /B 2 = C 1 /C 2.

Уравнения (2.7), (2.8) задают две различные параллельные прямые, если A 1 /A 2 = B 1 /B 2 и B 1 /B 2 ¹ C 1 /C 2; прямые пересекаются, если A 1 /A 2 ¹ B 1 /B 2.

Расстояние d от точки M о (x о, y о ) до прямой есть длина перпендикуляра, проведенного из точки M о к прямой. Если прямая задана нормальным уравнением, то d = ê r о n о - р ê , где r о - радиус-вектор точки M о или, в координатной форме, d = ê x о cos a + y о sin a - р ê .

Общее уравнение кривой второго порядка имеет вид:

a 11 x 2 + 2a 12 xy + a 22 y 2 + 2a 1 x +2a 2 y +a = 0.

Предполагается, что среди коэффициентов уравнения a 11, a 12, a 22 есть отличные от нуля.

Уравнение окружности с центром в точке С(a, b) и радиусом, равным R:

(x - a) 2 + (y - b) 2 = R 2.                                                        (2.9)

Эллипсом называется геометрическое место точек, сумма расстояний которых от двух данных точек F 1 и F 2 (фокусов) есть величина постоянная, равная 2a.

Каноническое (простейшее) уравнение эллипса:

x 2 /a 2 + y 2 /a 2 = 1.                                                         (2.10)

Эллипс, заданный уравнением (2.10), симметричен относительно осей координат. Параметры a и b называются полуосями эллипса.

Пусть a>b, тогда фокусы F 1 и F 2 находятся на оси Оx на расстоянии
c= уравнение  от начала координат. Отношение c/a =
e < 1 называется эксцентриситетом эллипса. Расстояния от точки M(x, y) эллипса до его фокусов (фокальные радиусы-векторы) определяются формулами:

r 1 = a - e x, r 2 = a + e x.

Если же a < b, то фокусы находятся на оси Оy, c= уравнение, e = c/b,
r 1 = b +
e x, r 2 = b - e x.

<1--уравнение-->

Если a = b, то эллипс является окружностью с центром в начале координат радиуса a.

Гиперболой называется геометрическое место точек, разность расстояний которых от двух данных точек F 1 и F 2 (фокусов) равна по абсолютной величине данному числу 2a.

Каноническое уравнение гиперболы:

x 2 /a 2 - y 2 /b 2 = 1.                                                         (2.11)

Гипербола, заданная уравнением (2.11), симметрична относительно осей координат. Она пересекает ось Оx в точках A (a,0) и A (-a,0) - вершинах гиперболы и не пересекает ось Оy. Параметр a называется вещественной полуосью, b - мнимой полуосью. Параметр c= есть расстояние от фокуса до начала координат. Отношение c/a = e >1 называется эксцентриситетом гиперболы. Прямые, уравнения которых y = ± b/a x называются асимптотами гиперболы. Расстояния от точки M(x,y) гиперболы до ее фокусов (фокальные радиусы-векторы) определяются формулами:

r 1 = ê e x - a ê , r 2 = ê e x + a ê .

Гипербола, у которой a = b, называется равносторонней, ее уравнение x 2 - y 2 = a 2, а уравнение асимптот y = ± x. Гиперболы x 2 /a 2 - y 2 /b 2 = 1 и
y 2 /b 2 - x 2 /a 2 = 1 называются сопряженными.

Параболой называется геометрическое место точек, одинаково удаленных от данной точки (фокуса) и данной прямой (директрисы).

Каноническое уравнение параболы имеет два вида:

1) y 2 = 2рx - парабола симметрична относительно оси Оx.

2) x 2 = 2рy - парабола симметрична относительно оси Оy.

В обоих случаях р>0 и вершина параболы, то есть точка, лежащая на оси симметрии, находится в начале координат.

Парабола, уравнение которой y 2 = 2рx имеет фокус F( р/2,0) и директрису x = - р/2, фокальный радиус-вектор точки M(x,y) на ней r = x+ р/2.

Парабола, уравнение которой x 2 =2рy имеет фокус F(0, р/2) и директрису y = - р/2; фокальный радиус-вектор точки M(x,y) параболы равен r = y + р/2.

Уравнение F(x, y) = 0 задает линию, разбивающую плоскость на две или несколько частей. В одних из этих частей выполняется неравенство F(x, y)<0, а в других - неравенство F(x, y)>0. Иными словами, линия
F(x, y)=0 отделяет часть плоскости, где F(x, y)>0, от части плоскости, где F(x, y)<0.

Прямая, уравнение которой Ax+By+C = 0, разбивает плоскость на две полуплоскости. На практике для выяснения того, в какой полуплоскости мы имеем Ax+By+C<0, а в какой Ax+By+C>0, применяют метод контрольных точек. Для этого берут контрольную точку (разумеется, не лежащую на прямой, уравнение которой Ax+By+C = 0) и проверяют, какой знак имеет в этой точке выражение Ax+By+C. Тот же знак имеет указанное выражение и во всей полуплоскости, где лежит контрольная точка. Во второй полуплоскости Ax+By+C имеет противоположный знак.

Точно так же решаются и нелинейные неравенства с двумя неизвестными.

Например, решим неравенство x 2 -4x+y 2 +6y-12 > 0. Его можно переписать в виде (x-2) 2 + (y+3) 2 - 25 > 0.

Уравнение (x-2) 2 + (y+3) 2 - 25 = 0 задает окружность с центром в точке C(2,-3) и радиусом 5. Окружность разбивает плоскость на две части - внутреннюю и внешнюю. Чтобы узнать, в какой из них имеет место данное неравенство, возьмем контрольную точку во внутренней области, например, центр C(2,-3) нашей окружности. Подставляя координаты точки C в левую часть неравенства, получаем отрицательное число -25. Значит, и во всех точках, лежащих внутри окружности, выполняется неравенство
x 2 -4x+y 2 +6y-12 < 0. Отсюда следует, что данное неравенство имеет место во внешней для окружности области.

Пример 1.5. Составьте уравнения прямых, проходящих через точку A(3,1) и наклоненных к прямой 2x+3y-1 = 0 под углом 45 o.

Решение. Будем искать уравнение прямой в виде y=kx+b. Поскольку прямая проходит через точку A, то ее координаты удовлетворяют уравнению прямой, т.е. 1=3k+b, Þ b=1-3k. Величина угла между прямыми
y= k 1 x+b 1 и y= kx+b определяется формулой tg
j = уравнение. Так как угловой коэффициент k 1 исходной прямой 2x+3y-1=0 равен - 2/3, а угол j = 45 o, то имеем уравнение для определения k:

(2/3 + k)/(1 - 2/3k) = 1 или (2/3 + k)/(1 - 2/3k) = -1.

Имеем два значения k: k 1 = 1/5, k 2 = -5. Находя соответствующие значения b по формуле b=1-3k, получим две искомые прямые, уравнения которых: x - 5y + 2 = 0 и
5x + y - 16 = 0.

Пример 1.6 . При каком значении параметра t прямые, уравнения которых 3tx-8y+1 = 0 и (1+t)x-2ty = 0, параллельны ?

Решение. Прямые, заданные общими уравнениями, параллельны, если коэффициенты при x и y пропорциональны, т.е. 3t/(1+t) = -8/(-2t). Решая полученное уравнение, находим t : t 1 = 2, t 2 = -2/3.

Пример 1.7 . Найти уравнение общей хорды двух окружностей:
x 2 +y 2 =10 и x 2 +y 2 -10x-10y+30=0.

Решение. Найдем точки пересечения окружностей, для этого решим систему уравнений:

уравнения.

Решая первое уравнение, находим значения x 1 = 3, x 2 = 1. Из второго уравнения - соответствующие значения y : y 1 = 1, y 2 = 3. Теперь получим уравнение общей хорды, зная две точки А(3,1) и B(1,3), принадлежащие этой прямой: (y-1)/(3-1) = (x-3)/(1-3), или y+ x - 4 = 0.

Пример 1.8 . Как расположены на плоскости точки, координаты которых удовлетворяют условиям (x-3) 2 + (y-3) 2 < 8, x > y?

Решение. Первое неравенство системы определяет внутренность круга, не включая границу, т.е. окружность с центром в точке (3,3) и радиуса уравнение. Второе неравенство задает полуплоскость, определяемую прямой, уравнение которой x = y, причем, так как неравенство строгое, точки самой прямой не принадлежат полуплоскости, а все точки ниже этой прямой принадлежат полуплоскости. Поскольку мы ищем точки, удовлетворяющие обоим неравенствам, то искомая область - внутренность полукруга.

Пример 1.9. Вычислить длину стороны квадрата, вписанного в эллипс, уравнение которого x 2 /a 2 + y 2 /b 2 = 1.

Решение. Пусть М(с, с) - вершина квадрата, лежащая в первой четверти. Тогда сторона квадрата будет равна 2 с. Т.к. точка М принадлежит эллипсу, ее координаты удовлетворяют уравнению эллипса c 2 /a 2 + c 2 /b 2 = 1, откуда
c = ab/ уравнение ; значит, сторона квадрата - 2ab/ уравнения.

Пример 1.10. Зная уравнение асимптот гиперболы y = ± 0,5 x и одну из ее точек М(12, 3 уравнения ), составить уравнение гиперболы.

Решение. Запишем каноническое уравнение гиперболы: x 2 /a 2 - y 2 /b 2 = 1. Асимптоты гиперболы задаются уравнениями y = ± 0,5 x, значит, b/a = 1/2, откуда a=2b. Поскольку М - точка гиперболы, то ее координаты удовлетворяют уравнению гиперболы, т.е. 144/a 2 - 27/b 2 = 1. Учитывая, что a = 2b, найдем b: b 2 =9 Þ b=3 и a=6. Тогда уравнение гиперболы - x 2 /36 - y 2 /9 = 1.

Пример 1.11. Вычислить длину стороны правильного треугольника ABC, вписанного в параболу с параметром р, предполагая, что точка А совпадает с вершиной параболы.

Решение. Каноническое уравнение параболы с параметром р имеет вид y 2 = 2рx, вершина ее совпадает с началом координат, и парабола симметрична относительно оси абсцисс. Так как прямая AB образует с осью Ox угол в 30 o, то уравнение прямой имеет вид: y =  x. большим количеством графиков

Следовательно, мы можем найти координаты точки B, решая систему уравнений y 2 =2рx, y =  x, откуда x = 6р, y = 2 уравнение р. Значит, расстояние между точками A(0,0) и B(6р,2 уравнения р) равно 4 уравнение р.