Вход через социальные сети

Геометрия Лобачевского. Неевклидовы геометрии

Тип Название темы Ответов Автор Просмотров Последнее сообщение
Тема форума О доказательстве пятого постулата Евклида

Спешу сообщить - я доказал пятый постулат Евклида. Сегодня отправил доказательство известным...

3 / - viksan31 48 27.03.2017 at 18:12 by viksan31
scientist Proscar | Buy Generic Uk


Looking for a proscar? Not a problem!

Guaranteed Worldwide...

- paleanglodvo 4 27.03.2017 at 13:14 by paleanglodvo
scientist Norvasc | Purchase Online


Looking for a norvasc? Not a problem!

Guaranteed Worldwide...

- paleanglodvo 7 27.03.2017 at 12:17 by paleanglodvo
scientist Pyridium | Order Online


Looking for a pyridium? Not a problem!

Guaranteed Worldwide...

- paleanglodvo 4 27.03.2017 at 12:17 by paleanglodvo
scientist Naltrexone | Buy Powder


Looking for a naltrexone? Not a problem!

Guaranteed Worldwide...

- produtobutteryzt 5 27.03.2017 at 11:17 by produtobutteryzt
scientist Promethazine | Buy Pills


Looking for a promethazine? Not a problem!

Guaranteed Worldwide...

- paleanglodvo 8 27.03.2017 at 05:10 by paleanglodvo
scientist Reminyl | Paypal Saturday Delivery Austria


Looking for a reminyl? Not a problem!

Guaranteed Worldwide...

- groanstrawln 10 27.03.2017 at 03:55 by groanstrawln
scientist Inderal | Buy Canada


Looking for a inderal? Not a problem!

Guaranteed Worldwide...

- produtobutteryzt 9 27.03.2017 at 00:02 by produtobutteryzt
scientist Nolvadex | How To Buy 10Mg


Looking for a nolvadex? Not a problem!

Guaranteed Worldwide...

- groanstrawln 7 26.03.2017 at 22:01 by groanstrawln
scientist Naprosyn | Discount Order Online


Looking for a naprosyn? Not a problem!

Guaranteed Worldwide...

- groanstrawln 10 26.03.2017 at 21:01 by groanstrawln
scientist Remeron | Buy Soltab


Looking for a remeron? Not a problem!

Guaranteed Worldwide...

- produtobutteryzt 16 26.03.2017 at 17:29 by produtobutteryzt
scientist Flomax | Buy Tamsulosin 0


Looking for a flomax? Not a problem!

Guaranteed Worldwide...

- groanstrawln 20 26.03.2017 at 11:41 by groanstrawln
scientist Famvir | No Prescription Fedex


Looking for a famvir? Not a problem!

Guaranteed Worldwide...

- groanstrawln 16 26.03.2017 at 11:04 by groanstrawln
scientist Erythromycin | Prescription Cheap Buy


Looking for a erythromycin? Not a problem!

Guaranteed Worldwide...

- groanstrawln 34 26.03.2017 at 11:03 by groanstrawln
scientist Ditropan | Get Visa Without Prescription


Looking for a ditropan? Not a problem!

Guaranteed Worldwide...

- groanstrawln 15 26.03.2017 at 07:42 by groanstrawln
scientist Diovan | Order Online Saturday Delivery


Looking for a diovan? Not a problem!

Guaranteed Worldwide...

- groanstrawln 18 26.03.2017 at 07:41 by groanstrawln
scientist Dramamine | Buy Online Uk


Looking for a dramamine? Not a problem!

Guaranteed Worldwide...

- produtobutteryzt 18 26.03.2017 at 07:39 by produtobutteryzt
scientist Differin | Cheapest Online Delivery


Looking for a differin? Not a problem!

Guaranteed Worldwide...

- groanstrawln 14 26.03.2017 at 06:42 by groanstrawln
scientist Olanzapine | Purchase Medication


Looking for a olanzapine? Not a problem!

Guaranteed Worldwide...

- produtobutteryzt 14 26.03.2017 at 06:40 by produtobutteryzt
scientist Fosamax | Purchase Osteoporosis


Looking for a fosamax? Not a problem!

Guaranteed Worldwide...

- produtobutteryzt 21 26.03.2017 at 01:49 by produtobutteryzt
scientist Suprax | Buy 400 Mg Online


Looking for a suprax? Not a problem!

Guaranteed Worldwide...

- produtobutteryzt 30 25.03.2017 at 23:43 by produtobutteryzt
scientist Altace | Order Side


Looking for a altace? Not a problem!

Guaranteed Worldwide...

- produtobutteryzt 20 25.03.2017 at 21:40 by produtobutteryzt
scientist Prinivil | Purchase Manufacturer


Looking for a prinivil? Not a problem!

Guaranteed Worldwide...

- produtobutteryzt 22 25.03.2017 at 13:00 by produtobutteryzt
scientist Aldactone | Purchase Online Without Prescription


Looking for a aldactone? Not a problem!

Guaranteed Worldwide...

- groanstrawln 20 25.03.2017 at 00:17 by groanstrawln
scientist Accutane | Order Pharmacy


Looking for a accutane? Not a problem!

Guaranteed Worldwide...

- groanstrawln 25 24.03.2017 at 23:02 by groanstrawln
  • 162страниц:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 141страниц:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
Название темы Ответов Автор Просмотров Последнее сообщение
О доказательстве пятого постулата Евклида

Спешу сообщить - я доказал пятый постулат Евклида. Сегодня отправил доказательство известным...

3 / - viksan31 48 27.03.2017 at 18:12 by viksan31
олимпийские задания

Задания олимпиад разных лет http://пятьколец.рф

- radrad 143 14.03.2017 at 20:34 by radrad
Диагностическая работа 6 с5

Как доказать √(1953^200-4*1995^100) ирациональное число.

- dregonh 166 12.03.2017 at 16:09 by dregonh
Помогите решить для 4 класса
Дополни решение задачи по действиям, с пояснениями. Вычисли и запиши ответ. Из двух городов...
26 / - xitraya.ya 2 020 09.03.2017 at 23:09 by Студентс
Алгебра. 8 класс.

Подскажите, как решать квадратичные уравнения, никак не могу понять.
 

- mikhailova.280 254 02.03.2017 at 08:32 by mikhailova.280
Уравнение нормали ПОМОГИТЕ

Задание: написать уравнение нормали к кривой y=e^(1-x) зная, что эта нормаль параллельна прямой...

2 / - Hidemi2013 632 08.02.2017 at 18:49 by ARRY
Помогите, 9класс

дана система 

х^2+(y-3)^2=9
y=[x]=a

2 / - abrosyalnr 601 07.02.2017 at 19:58 by GEPIDIUM
Пожалуйста , помогите найти интегралы!!!!!

Найти интегралы !

3 / - gennnevra 778 03.02.2017 at 17:44 by 12d3
Найти угол между плоскостями

В правильной четырёхугольной призме ABCDA1B1C1D1
cтороны основания равны 1, а боковые...

- kicul.tanya 409 28.01.2017 at 05:48 by kicul.tanya
помогите решать?

f(2-f(x))=6-4x  ,найти f(x)=ax+b
 

1 / - gelgelsema 592 19.01.2017 at 16:30 by grigoriy
Геометрия окружность HELP

Точки Р и Т принадлежат соответственно сторонам ВС и СД квадрата АВСД, причём ВР=ДТ и угол ВАР=...

- ssnnee 416 18.01.2017 at 11:43 by ssnnee
Прошу помогите Геометрия 7 класс
1. Периметр треуг. ABC равен 107 см. Сторона АВ равна 42 см, а разность сторон АС и ВС равна 15 см...
1 / - ser-evtushenko2015 781 28.12.2016 at 20:55 by Albe
Тригонометрия

Здравствуйте!

Подскажите пожалуйста, как начать:

...

1 / - Александр Малошенко 819 21.12.2016 at 21:07 by 12d3
почему Г. Перельман постеснялся принять призовой миллион долларов

Институт  Клэя  заявил о семи «задачах  тысячелетия»  за решение которых обещает миллион...

1 / - boguslavka1 747 19.12.2016 at 12:22 by GEPIDIUM
Известна точка пересечения диагоналей квадрата К (1,5;3,5) и уравнение одной из сторон х-4у+4=0 Помогите решить!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! хелп ми - kakveter02 637 06.12.2016 at 13:26 by kakveter02
Помогите решить

Какую высоту имеет медный провод с площей поперечного перереза 0.1 мм2 если при напряжении 1.7...

1 / - davidgt9500 906 02.12.2016 at 11:31 by Таланов
Разность двух величин

Здрасте всем. Тут в задании по электронике был расчёт операционного усилителя. Там есть 4-х...

14 / - GEPIDIUM 2 822 23.11.2016 at 10:34 by GEPIDIUM
Найти "красивую последовательность концентрических сфер"

Имеется система концентрических сфер, главный признак которых – один общий центр. Сферы –...

4 / - kimmak2014 3 189 22.11.2016 at 10:37 by kimmak2014
Доказать неравенство

Здраствуйте. Возникла у меня затыка в курсовой по рядам. Там в одной задаче я исследовала...

26 / - GEPIDIUM 4 885 12.11.2016 at 09:43 by ARRY
Выражение переменной из формулы

Добрый день товарищи форумчане! Поставлена задача выразить переменную из формулы и с этим...

16 / - dogd 3 075 25.10.2016 at 21:10 by Olelukoe
Составить математическую модель задачи
Есть задача
...
14 / - Ёрик 8 088 21.10.2016 at 20:26 by magammed-gasanov97
Помогите решить
Учитель размышляет: -Если я собиру по 75 руб с каждого ученика то не хватит 440 руб на поездку....
4 / - Natalie-2004 1 872 11.10.2016 at 00:04 by ARRY
Геометрия для поступающих в ВУЗ.

Диагонали прямоугольного четырёхугольника взаимно-перпендикулярны. Найдите площадь этого  ...

5 / - kpn65super9 2 151 04.10.2016 at 15:17 by losev.cergej
Логическая, может кому интересно типа 2+2

Вам завязали глаза. На столе лежат 13 монет 5 решкой и 8 орлом на ощупь различить их нельзя,...

3 / - losev.cergej 1 552 03.10.2016 at 23:00 by losev.cergej
Проверьте вычисление.

...

1 / - AAA1111 1 170 01.10.2016 at 03:14 by AAA1111
  • 141страниц:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
18.08.2014, 04:31
adminus
1 up down

Геометрия Лобачевского. Неевклидовы геометрии


Глава 15. Неевклидова геометрия

15.2. Геометрия Лобачевского. Неевклидовы геометрии

Среди аксиом Евклида была аксиома о параллельности прямых, а точнее, пятый постулат о параллельных линиях : если две прямые образуют с третьей по одну ее сторону внутренние углы, сумма которых меньше развернутого угла, то такие прямые пересекаются при достаточном продолжении с одной стороны. В современной формулировке она говорит о существовании не более одной прямой, проходящей через данную точку вне данной прямой и параллельной этой данной прямой.

Сложность формулировки пятого постулата породила мысль о возможной зависимости его от других постулатов, и потому возникали попытки вывести его из остальных предпосылок геометрии. Как правило, это заканчивалось неудачей. Были попытки доказательства от противного: прийти к противоречию, предполагая верным отрицание постулата. Однако и этот путь был безуспешным.

Наконец, в начале XX века почти одновременно сразу у нескольких математиков: у К. Гаусса в Германии, у Я. Больяи в Венгрии и у Н. Лобачевского в России возникла мысль о существовании геометрии, в которой верна аксиома: на плоскости через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, не пересекающие данную.

В силу приоритета Н. Лобачевского, который первым выступил с этой идеей в 1826, и его вклада в развитие новой, отличной от евклидовой геометрии последняя была названа в его честь «геометрией Лобачевского».

Аксиоматика планиметрии Лобачевского отличается от аксиоматики планиметрии Евклида лишь одной аксиомой: аксиома параллельности заменяется на ее отрицание – аксиому параллельности Лобачевского

Найдутся такая прямая a и такая не лежащая на ней точка A , что через A проходят по крайней мере две прямые, не пересекающие a .

Как уже отмечалось в § 15.1, непротиворечивость системы аксиом доказывается представлением модели, в которой реализуются данные аксиомы. Модель планиметрии Лобачевского на евклидовой плоскости, которая будет здесь представлена, сделана по материалам учебника «Геометрия» (А. Д. Александров, А. Л. Вернар, В. И. Рыжик, М: Просвещение, 1991). Эта модель была предложена французским математиком Анри Пуанкаре в 1882 году.

Для начала напомним основные понятия и аксиоматику, на которой базировалось изложение, систематизировав их заново и дополнив необходимыми аксиомами.

За основные объекты были приняты точка, прямая и фигура. За основные отношения между этими объектами принимаются:

    1) точка принадлежит фигуре, в частности прямой;

    2) точка лежит между двумя точками для точек прямой.

Следующие определения базируются на основных определениях.

  1. Фигура называется объединением некоторых данных фигур, если ей принадлежат все точки этих фигур, и никакие другие.
  2. Отрезком называется часть прямой, которая состоит из всех точек этой прямой, лежащих между двумя данными ее точками. Эти точки называются концами отрезка.
  3. Лучом AB называется часть прямой, состоящая из всех ее точек, лежащих по ту же сторону от точки A , что и точка B . Точка A называется вершиной луча.
  4. Углом называется фигура, которая состоит из точки – вершины угла и двух различных лучей, исходящих из этой точки, – сторон угла.
  5. Полуплоскостью, ограниченной прямой a , называется фигура, обладающая следующими свойствами:
    • она не содержит прямую a ;
    • если точки A и B принадлежат полуплоскости, то отрезок AB не имеет общих точек с a ;
    • если же A принадлежит полуплоскости, а B нет, то отрезок AB имеет общую точку с прямой a .

Приведем систему аксиом, обозначив римской цифрой номер группы, а арабской – номер аксиомы в группе.

    I. Аксиомы связи прямой и точки.

  1. Существуют, по крайней мере, две точки.
  2. Какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей.
  3. Через любые две точки можно провести прямую и только одну.
  4. Из трех точек на прямой одна и только одна лежит между двумя другими.

    II. Метрические аксиомы отрезка.

  1. Каждый отрезок имеет определенную длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой.
  2. На каждом луче от его начала можно отложить отрезок заданной длины и только один.

    III. Аксиома непрерывности.

  1. Пусть A и B – любые две точки прямой a и пусть и  – совокупности всех точек отрезка AB , таких, что      и любая точка из лежит по ту же сторону, что и точка A от любой точки из Тогда существует точка C , такая, что любая точка из лежит по ту же сторону от C , что и A , а любая точка из  – по ту же сторону от C , что и B .

    IV. Аксиомы плоскости.

  • Прямая разбивает плоскость на две полуплоскости.
  • Каждый угол имеет определенную градусную меру, большую нуля. Развернутый угол равен 180°. Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.
  • От любого луча в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180°, и только один.
  • Каков бы ни был треугольник, существует равный ему треугольник в заданном расположении относительно данного луча.

    V. Аксиома параллельности Евклида.

Через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной.

Построение модели Пуанкаре начнем с того, что придадим конкретный смысл основным объектам и основным отношениям планиметрии Лобачевского. Для этого фиксируем на евклидовской плоскости E горизонтальную прямую x . Она носит название «абсолюта». Точками плоскости Лобачевского считаются точки плоскости E , лежащие выше абсолюта x . Таким образом, в модели Пуанкаре плоскость Лобачевского – это полуплоскость L , лежащая выше абсолюта.

Прямыми плоскости L считаются полуокружности с центрами на абсолюте или лучи с вершинами на абсолюте и перпендикулярные ему.

Фигура на плоскости Лобачевского – это фигура полуплоскости L . Принадлежность точки фигуре понимается так же, как и на евклидовой плоскости E . При этом отрезком плоскости L считается дуга окружности с центром на абсолюте или отрезок прямой, перпендикулярной абсолюту (см. рис. 15.2.1). Точка K лежит между точками C и D , значит, что K принадлежит дуге CD . В условиях нашей модели это эквивалентно тому, что K' лежит между C' и D' , где C' , K' и D' – проекции точек C , K и D соответственно на абсолют. Чтобы ввести понятие равенства неевклидовых отрезков в модели Пуанкаре, определяют неевклидовы движения в этой модели.

Рисунок 15.2.1.

Неевклидовым движением называется преобразование L , которое является композицией конечного числа инверсий с центрами на абсолюте и осевых симметрий плоскости E , оси которых перпендикулярны абсолюту. Инверсии с центром на абсолюте и осевые симметрии плоскости E , оси которых перпендикулярны абсолюту, называют неевклидовыми симметриями. Два неевклидовых отрезка называют равными, если один из них неевклидовым движением можно перевести во второй.

Выше дана реализация всех основных понятий аксиоматики планиметрии Лобачевского через понятия евклидовой геометрии. Теперь необходимо проверить справедливость приведенных выше аксиом.

Из группы аксиом I очевидна справедливость аксиом I.1, I.2, I.4.

Аксиома I.3. 

Пусть даны точки A и B .

Рисунок 15.2.2.

Аксиома II.1. 

Так как каждый неевклидов отрезок AB представляет из себя либо евклидов отрезок (если прямая AB перпендикулярна абсолюту), либо дугу окружности, то в первом случае аксиома выполнена очевидно.

Для анализа второго случая допустим, что AB есть искомый неевклидов отрезок. Рассмотрим инверсию i относительно окружности S с центром в точке O , пересечения неевклидовой прямой AB и абсолюта и радиусом R , равным OA  >  OB (рис. 15.2.4). При этом образом невклидовой прямой AB будет луч где , а образом неевклидова отрезка – отрезок   евклидова луча  Здесь – вторая точка пересечения неевклидовой прямой AB и абсолюта. Так как  является образом отрезка AB при неевклидовом движении, то они равны по определению и, следовательно, имеют равные длины. Так как аксиома выполнена для евклидова отрезка , то она выполнена и для неевклидова отрезка AB .

Рисунок 15.2.4.

Аксиома II.2. 

Возможны несколько случаев.

Рисунок 15.2.8.

Аксиома непрерывности III для неевклидовых отрезков сводится к случаю евклидовых отрезков проектированием на абсолют (рис. 15.2.8) или преобразованием неевклидова отрезка в отрезок евклидовой прямой, перпендикулярной абсолюту, с помощью инверсии, описанной при доказательстве справедливости аксиомы II.1. В модели Пуанкаре выполняется аксиома IV.1. Неевклидовы полуплоскости изображены на рис. 15.2.9. Неевклидов отрезок, соединяющий две точки неевклидовой полуплоскости, не пересекает ее границы. Действительно, предположив противное, мы пришли бы к тому, что евклидовы окружности пересекались бы в четырех точках (рис. 15.2.10), что невозможно.


Рисунок 15.2.9.
Рисунок 15.2.10.

Аксиома IV.2. 

Возможные реализации углов в модели Пуанкаре для неевклидовых углов показаны на рис. 15.2.11.

Рисунок 15.2.11.
Рисунок 15.2.12.

Из рисунка видно, что неевклидовыми углами являются угол между пересекающимися окружностями, а также между окружностью и пересекающей ее прямой. В соответствии с определением, данным в разделе 13, угол между пересекающимися окружностями это – угол между касательными к ним прямыми, проведенными в точке пересечения, а угол между окружностью и пересекающей ее прямой – это угол между касательной к окружности в точке пересечения и прямой.

Таким образом величины неевклидовых углов определяются через величины соответствующих евклидовых углов. Отсюда достаточно очевидна справедливость аксиомы IV.2.

Аксиома IV.3. 

Проверку аксиомы IV.4 проведем только для случая, когда данный неевклидов луч есть часть полуокружности.

В соответствии с аксиомами II.2 и IV.3 отложим от вершины A данного луча отрезок равный данной стороне  треугольника . Кроме того, отложим от данного луча в данную полуплоскость угол, равный углу A 1 треугольника . На луче, задающем вторую сторону отложенного угла, отложим от точки A отрезок равный стороне исходного треугольника. Покажем, что полученный треугольник  равен треугольнику Так как по построению  равен , существует неевклидово движение f , переводящее отрезок  в AB так, что  При неевклидовом преобразовании углы сохраняются, поэтому либо точка  окажется на луче , либо его можно совместить с точкой этого луча дополнительной осевой симметрией относительно луча . При этом по свойству 3 отрезок  перейдет в себя и  В силу свойства 1 преобразование  также будет неевклидовым движением. Покажем, что точка C 3 совпадет с C 2. Действительно, если бы это было не так, то оказалось бы, что на луче AC 2 отложены два различных отрезка данной длины, что противоречит аксиоме II.2. Следовательно, существует неевклидово движение, которое переводит данный треугольник   в треугольник , что завершает доказательство.

Утверждение аксиомы параллельности Лобачевского выполняется не только для некоторой прямой a и некоторой точки A , не лежащей на a , но и для любой неевклидовой прямой a и любой не лежащей на ней точки A (рис. 15.2.14).

Рисунок 15.2.14.

Приведенное выше рассмотрение позволяет сделать вывод о непротиворечивости геометрии Лобачевского и обосновать независимость аксиомы параллельности от остальных аксиом групп I–IV с той степенью строгости, конечно, с которой была построена и обоснована модель Пуанкаре в данном изложении.

Используя модель Пуанкаре, можно изучить свойства плоскости Лобачевского. На плоскости Лобачевского L' через каждую точку A , не лежащую на прямой a , проходит бесконечное множество прямых, не пересекающих прямую a (рис. 15.2.15).

Рисунок 15.2.15.
Рисунок 15.2.16.

Все эти прямые заполняют два вертикальных угла, ограниченных прямыми p и q . Граничные прямые p и q , не пересекающие прямую a , называются на плоскости Лобачевского параллельными прямой a и проходящими через A . Каждому направлению на прямой a соответствует своя параллельная прямая, проходящая через A .

Характерным свойством параллельных прямых на плоскости Лобачевского является то, что они неограниченно сближаются в направлении параллельности и неограниченно расходятся в противоположном направлении (рис. 15.2.16).

Те прямые на плоскости Лобачевского, которые и не пересекаются, и не параллельны, называются расходящимися . Характерное свойство расходящихся прямых – наличие у них единственного перпендикуляра.

В модели Пуанкаре параллельные прямые изображаются полуокружностями и лучами, касающимися на абсолюте (рис. 15.2.17, а).

Рисунок 15.2.17.

На плоскости Лобачевского углы и длины связаны другими зависимостями, нежели на плоскости Евклида. Одно из характерных свойств плоскости L выражается функцией Лобачевского .

Из некоторой точки O прямой a проводится луч  (рис. 15.2.18). Пусть  – произвольная точка, а x – длина отрезка OX . Определим   как величину острого угла между отрезком OX и прямой, параллельной прямой a и проходящей через точку X . Тогда свойство можно сформулировать так.

При возрастании x от нуля до бесконечности функция  непрерывно убывает от 90° до 0°.

Рисунок 15.2.18.

Существование таких зависимостей между длинами отрезков и углами означает, что на плоскости Лобачевского нет подобных фигур.

Например, на плоскости Лобачевского справедлив признак равенства треугольников: если углы одного треугольника соответственно равны углам другого треугольника, то такие треугольники равны. Сумма углов треугольника на плоскости Лобачевского меньше 180°. Разность между 180° и суммой углов треугольника называется избытком треугольника. Оказывается, что на плоскости Лобачевского площадь треугольника пропорциональна его избытку. Следовательно, на плоскости Лобачевского площади треугольников ограничены некоторой постоянной. Величины углов на плоскости Лобачевского в модели Пуанкаре равны величинам соответствующих углов на евклидовой плоскости. Поэтому все перечисленные свойства углов плоскости L можно увидеть на модели Пуанкаре.

Для иллюстрации аксиомы о параллельности прямых рассмотрим следующую схему. Имея прямую a и точку A вне ее, соединяем A с точкой P , лежащей на a , и отодвигаем точку P в положение P' P'' , ... и все дальше, и дальше на a (иными словами, представляется последовательность точек P P' P'' , ... или соответственно последовательность прямых AP AP' AP'' , ...). Прямая AP при этом вращается вокруг A и достигнет некоторого предельного положения, когда P удалится в бесконечность, и эту предельную прямую и надо понимать как прямую, параллельную прямой a , проходящую через A .

При этом нет никаких изначальных соображений, в силу которых прямая AP должна приближаться к одному и тому же предельному положению при удалении P в бесконечность как в одну, так и в другую сторону, что дает абстрактную возможность существования двух различных прямых, проходящих через A , параллельных прямой a . В этой связи постулат параллельных прямых в евклидовой геометрии – не что иное, как соглашение о том, что эти два предельных положения должны совпадать, и через точку A должна проходить только одна прямая, параллельная прямой a . На примере геометрии Лобачевского было показано, что допущение о несовпадении предельных прямых, а именно отрицание аксиомы о единственности прямой, проходящей через точку A , не привело к противоречию, а наоборот, привело к построению новой неевклидовой геометрии. Однако наряду с геометрией Лобачевского существует еще один вид неевклидовой геометрии, которую полезно упомянуть.