Вход через социальные сети

Эллипс и его свойства

Тип Название темы Ответов Автор Просмотров Последнее сообщение
scientist Flomax | Buy Tamsulosin 0


Looking for a flomax? Not a problem!

Guaranteed Worldwide...

- groanstrawln 1 26.03.2017 at 11:41 by groanstrawln
scientist Famvir | No Prescription Fedex


Looking for a famvir? Not a problem!

Guaranteed Worldwide...

- groanstrawln 2 26.03.2017 at 11:04 by groanstrawln
scientist Erythromycin | Prescription Cheap Buy


Looking for a erythromycin? Not a problem!

Guaranteed Worldwide...

- groanstrawln 2 26.03.2017 at 11:03 by groanstrawln
scientist Ditropan | Get Visa Without Prescription


Looking for a ditropan? Not a problem!

Guaranteed Worldwide...

- groanstrawln 3 26.03.2017 at 07:42 by groanstrawln
scientist Diovan | Order Online Saturday Delivery


Looking for a diovan? Not a problem!

Guaranteed Worldwide...

- groanstrawln 4 26.03.2017 at 07:41 by groanstrawln
scientist Dramamine | Buy Online Uk


Looking for a dramamine? Not a problem!

Guaranteed Worldwide...

- produtobutteryzt 7 26.03.2017 at 07:39 by produtobutteryzt
scientist Differin | Cheapest Online Delivery


Looking for a differin? Not a problem!

Guaranteed Worldwide...

- groanstrawln 3 26.03.2017 at 06:42 by groanstrawln
scientist Olanzapine | Purchase Medication


Looking for a olanzapine? Not a problem!

Guaranteed Worldwide...

- produtobutteryzt 3 26.03.2017 at 06:40 by produtobutteryzt
scientist Fosamax | Purchase Osteoporosis


Looking for a fosamax? Not a problem!

Guaranteed Worldwide...

- produtobutteryzt 3 26.03.2017 at 01:49 by produtobutteryzt
scientist Suprax | Buy 400 Mg Online


Looking for a suprax? Not a problem!

Guaranteed Worldwide...

- produtobutteryzt 15 25.03.2017 at 23:43 by produtobutteryzt
scientist Altace | Order Side


Looking for a altace? Not a problem!

Guaranteed Worldwide...

- produtobutteryzt 3 25.03.2017 at 21:40 by produtobutteryzt
scientist Prinivil | Purchase Manufacturer


Looking for a prinivil? Not a problem!

Guaranteed Worldwide...

- produtobutteryzt 8 25.03.2017 at 13:00 by produtobutteryzt
scientist Aldactone | Purchase Online Without Prescription


Looking for a aldactone? Not a problem!

Guaranteed Worldwide...

- groanstrawln 6 25.03.2017 at 00:17 by groanstrawln
scientist Accutane | Order Pharmacy


Looking for a accutane? Not a problem!

Guaranteed Worldwide...

- groanstrawln 9 24.03.2017 at 23:02 by groanstrawln
scientist Proventil | To Buy


Looking for a proventil? Not a problem!

Guaranteed Worldwide...

- produtobutteryzt 15 24.03.2017 at 19:13 by produtobutteryzt
scientist Ditropan | Purchase


Looking for a ditropan? Not a problem!

Guaranteed Worldwide...

- produtobutteryzt 12 24.03.2017 at 18:10 by produtobutteryzt
scientist Clonazepam | Purchase Online Seho1p


Looking for a clonazepam? Not a problem!

Guaranteed Worldwide...

- paleanglodvo 10 24.03.2017 at 15:09 by paleanglodvo
scientist Lamisil | Purchase 250Mg Tablets


Looking for a lamisil? Not a problem!

Guaranteed Worldwide...

- produtobutteryzt 9 24.03.2017 at 13:56 by produtobutteryzt
scientist Cyklokapron | Buy Price


Looking for a cyklokapron? Not a problem!

Guaranteed Worldwide...

- produtobutteryzt 25 24.03.2017 at 13:55 by produtobutteryzt
scientist Effexor | Xr Canada Cheap


Looking for a effexor? Not a problem!

Guaranteed Worldwide...

- groanstrawln 25 24.03.2017 at 11:21 by groanstrawln
scientist Bentyl | Best Price Pharmaceutical Visa


Looking for a bentyl? Not a problem!

Guaranteed Worldwide...

- paleanglodvo 17 24.03.2017 at 11:20 by paleanglodvo
scientist Avapro | Low Cost Aprovel Visa


Looking for a avapro? Not a problem!

Guaranteed Worldwide...

- paleanglodvo 27 24.03.2017 at 10:43 by paleanglodvo
scientist Cleocin | Buy Cheap Canada Online


Looking for a cleocin? Not a problem!

Guaranteed Worldwide...

- paleanglodvo 15 24.03.2017 at 04:27 by paleanglodvo
scientist Ambien | Mail Order Cheap


Looking for a ambien? Not a problem!

Guaranteed Worldwide...

- paleanglodvo 14 24.03.2017 at 02:10 by paleanglodvo
scientist Vasotec | Coumadin Purchase Buy Fedex


Looking for a vasotec? Not a problem!

Guaranteed Worldwide...

- produtobutteryzt 12 24.03.2017 at 01:26 by produtobutteryzt
  • 162страниц:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 141страниц:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
Название темы Ответов Автор Просмотров Последнее сообщение
олимпийские задания

Задания олимпиад разных лет http://пятьколец.рф

- radrad 127 14.03.2017 at 20:34 by radrad
Диагностическая работа 6 с5

Как доказать √(1953^200-4*1995^100) ирациональное число.

- dregonh 153 12.03.2017 at 16:09 by dregonh
Помогите решить для 4 класса
Дополни решение задачи по действиям, с пояснениями. Вычисли и запиши ответ. Из двух городов...
26 / - xitraya.ya 1 977 09.03.2017 at 23:09 by Студентс
Алгебра. 8 класс.

Подскажите, как решать квадратичные уравнения, никак не могу понять.
 

- mikhailova.280 236 02.03.2017 at 08:32 by mikhailova.280
Уравнение нормали ПОМОГИТЕ

Задание: написать уравнение нормали к кривой y=e^(1-x) зная, что эта нормаль параллельна прямой...

2 / - Hidemi2013 615 08.02.2017 at 18:49 by ARRY
Помогите, 9класс

дана система 

х^2+(y-3)^2=9
y=[x]=a

2 / - abrosyalnr 584 07.02.2017 at 19:58 by GEPIDIUM
Пожалуйста , помогите найти интегралы!!!!!

Найти интегралы !

3 / - gennnevra 761 03.02.2017 at 17:44 by 12d3
Найти угол между плоскостями

В правильной четырёхугольной призме ABCDA1B1C1D1
cтороны основания равны 1, а боковые...

- kicul.tanya 398 28.01.2017 at 05:48 by kicul.tanya
помогите решать?

f(2-f(x))=6-4x  ,найти f(x)=ax+b
 

1 / - gelgelsema 575 19.01.2017 at 16:30 by grigoriy
Геометрия окружность HELP

Точки Р и Т принадлежат соответственно сторонам ВС и СД квадрата АВСД, причём ВР=ДТ и угол ВАР=...

- ssnnee 396 18.01.2017 at 11:43 by ssnnee
Прошу помогите Геометрия 7 класс
1. Периметр треуг. ABC равен 107 см. Сторона АВ равна 42 см, а разность сторон АС и ВС равна 15 см...
1 / - ser-evtushenko2015 766 28.12.2016 at 20:55 by Albe
Тригонометрия

Здравствуйте!

Подскажите пожалуйста, как начать:

...

1 / - Александр Малошенко 809 21.12.2016 at 21:07 by 12d3
почему Г. Перельман постеснялся принять призовой миллион долларов

Институт  Клэя  заявил о семи «задачах  тысячелетия»  за решение которых обещает миллион...

1 / - boguslavka1 724 19.12.2016 at 12:22 by GEPIDIUM
Известна точка пересечения диагоналей квадрата К (1,5;3,5) и уравнение одной из сторон х-4у+4=0 Помогите решить!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! хелп ми - kakveter02 621 06.12.2016 at 13:26 by kakveter02
Помогите решить

Какую высоту имеет медный провод с площей поперечного перереза 0.1 мм2 если при напряжении 1.7...

1 / - davidgt9500 890 02.12.2016 at 11:31 by Таланов
Разность двух величин

Здрасте всем. Тут в задании по электронике был расчёт операционного усилителя. Там есть 4-х...

14 / - GEPIDIUM 2 795 23.11.2016 at 10:34 by GEPIDIUM
Найти "красивую последовательность концентрических сфер"

Имеется система концентрических сфер, главный признак которых – один общий центр. Сферы –...

4 / - kimmak2014 3 160 22.11.2016 at 10:37 by kimmak2014
Доказать неравенство

Здраствуйте. Возникла у меня затыка в курсовой по рядам. Там в одной задаче я исследовала...

26 / - GEPIDIUM 4 844 12.11.2016 at 09:43 by ARRY
Выражение переменной из формулы

Добрый день товарищи форумчане! Поставлена задача выразить переменную из формулы и с этим...

16 / - dogd 3 037 25.10.2016 at 21:10 by Olelukoe
Составить математическую модель задачи
Есть задача
...
14 / - Ёрик 8 021 21.10.2016 at 20:26 by magammed-gasanov97
Помогите решить
Учитель размышляет: -Если я собиру по 75 руб с каждого ученика то не хватит 440 руб на поездку....
4 / - Natalie-2004 1 855 11.10.2016 at 00:04 by ARRY
Геометрия для поступающих в ВУЗ.

Диагонали прямоугольного четырёхугольника взаимно-перпендикулярны. Найдите площадь этого  ...

5 / - kpn65super9 2 134 04.10.2016 at 15:17 by losev.cergej
Логическая, может кому интересно типа 2+2

Вам завязали глаза. На столе лежат 13 монет 5 решкой и 8 орлом на ощупь различить их нельзя,...

3 / - losev.cergej 1 538 03.10.2016 at 23:00 by losev.cergej
Проверьте вычисление.

...

1 / - AAA1111 1 158 01.10.2016 at 03:14 by AAA1111
задача на вектора

Здравствуйте. Известно разложение вектора OD

OD=2OA+0,5ОВ-1,5ОС. Докажите, что точки A,...

2 / - tata00tata 1 457 27.09.2016 at 02:25 by zam2
  • 141страниц:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
18.08.2014, 04:27
adminus
1 up down

Эллипс и его свойства


Глава 10. Декартовы координаты

10.8. Эллипс и его свойства

В § 7 было получено уравнение фигуры, которую мы назвали эллипсом:
Перейдем в новую систему координат, перенеся начало системы координат в точку  и повернув оси исходной системы на угол 90°.

В соответствии с формулами преобразования координат выразим старые координаты через новые по формулам:
или
В новой системе координат, которую называют канонической , уравнение эллипса имеет вид
при этом
то есть при k  < 1 получим, что a  >  b  > 0. В дальнейшем для удобства будем опускать знак "штрих" и будем вместо x'  ( y' ) писать x  ( y ). Таким образом, получим уравнение эллипса в новой системе координат.
Это уравнение называется каноническим уравнением эллипса .

Рассмотрим свойства эллипса.

Свойство 10.1. 

Эллипс пересекает каждую из осей координат в двух точках.

Доказательство

Для определения точек пересечения эллипса с осью Ox нужно решить совместно два уравнения
Отсюда получим x  = ± a . Таким образом, точками пересечения эллипса с осью Ox будут точки A  ( a ; 0) и  C  (– a ; 0).

Аналогично, точки пересечения эллипса с осью Oy  –  B  (0;  b ) и  D  (0; – b ).

Точки A B C  и  D называются вершинами эллипса . Отрезок AC называется большой осью эллипса , отрезок BD малой осью . Числа a  и  b называют полуосями эллипса . Точки  и  где  называются фокусами эллипса .

Пусть M  ( x y ) – произвольная точка эллипса. Найдем расстояния от точки M до фокусов эллипса.
  Рассмотрим выражение

Здесь мы учли, что координаты ( x y ) точки M удовлетворяют уравнению эллипса.

Величину  называют эксцентриситетом эллипса . Очевидно, для эллипса ε < 1. Поскольку  то отсюда следует, что a  – ε x  > 0. Поэтому  

Свойство 10.2. 

Сумма расстояний от любой точки эллипса до его фокусов есть величина постоянная и равная удвоенной большей полуоси.

Доказательство

Действительно, используя полученные выражения для расстояний от точки эллипса до его фокусов, получим

Свойство 10.3. 

Эллипс имеет две взаимно перпендикулярные оси симметрии.

Доказательство

В уравнение эллипса переменные x  и  y входят только во второй степени, поэтому если точка  принадлежит эллипсу, то точки  и  также принадлежат ему, так как их координаты удовлетворяют уравнению эллипса. Точка  симметрична точке M относительно оси Ox , а точка  – относительно Oy . Таким образом, эллипс имеет две оси симметрии, они взаимно перпендикулярны. Большая и малая полуоси эллипса лежат на его осях симметрии.

Свойство 10.4.  Эллипс имеет центр симметрии.

Доказательство

Если координаты точки M  ( x y ) удовлетворяют уравнению эллипса, то этому же уравнению удовлетворяют и координаты точки N  (– x ; – y ). Точка M симметрична точке N относительно начала координат. Таким образом, эллипс имеет центр симметрии.

Центр симметрии эллипса называется центром эллипса .

Свойство 10.5.  Эллипс может быть получен сжатием окружности.

Доказательство

Пусть  – окружность с центром в начале координат и радиуса a . Тогда
Точке  на окружности сопоставим точку  такую, что
Точка  получается сдвигом точки P , при котором абцисса не меняется, а ордината уменьшается в отношении Координаты точки удовлетворяют уравнению эллипса. В самом деле,

Таким образом, эллипс можно получить из окружности равномерным сжатием к оси Ox , при котором ординаты точек уменьшаются в одном и том же соотношении, равном  Отсюда следует, что форма эллипса зависит от значения отношения  чем меньше это отношение, тем более сжатым будет эллипс, и наоборот, чем больше отношение  тем эллипс будет менее сжатым.

В качестве характеристики формы эллипса удобнее пользоваться эксцентриситетом. Так как
то чем больше ε, тем более сжат эллипс.

При малых значениях эксцентриситета эллипс мало отличается от окружности. При ε = 0 эллипс превращается в окружность.

В § 7 мы определили эллипс как множество точек, отношение расстояний от которых до данной точки A и данной прямой l есть величина постоянная и равная числу k .

Рассмотрим, какие координаты имеет точка A и какое уравнение – прямая l в канонической системе координат. Для начала отметим, что в силу введенных ранее обозначений
Тогда
Таким образом, данное в условии исходной задачи число, характеризующее величину отношения расстояний от точки эллипса до точки A и прямой l , есть эксцентриситет эллипса.

Координаты точки  при переходе в новую систему будут равны:
То есть точка A в новой системе координат имеет те же координаты, что и фокус  эллипса и поэтому совпадет с ним.

Уравнение прямой в исходной системе координат имело вид  После замены системы координат получим новое уравнение прямой l
Обозначим  и покажем, что  Действительно,
Поскольку для эллипса ε < 1, то

Прямая x  = – d называется директрисой , соответствующей фокусу F 1 (-c; 0). Наряду с этой директрисой вводят прямую x  =  d , которая является директрисой, соответствующей фокусу F 2 ( c ; 0).

С учетом свойств симметрии эллипса, свойство, с помощью которого мы определили эллипс, в новых терминах можно сформулировать следующим образом: отношение расстояния от любой точки эллипса до одного из его фокусов к расстоянию от этой точки до соответствующей ему директрисы есть величина постоянная и равная эксцентриситету. Вид эллипса в канонической системе координат и его директрисы приведены на рис. 10.8.1.

Рисунок 10.8.1.