Вход через социальные сети

Неравенства с модулем

Тип Название темы Ответов Автор Просмотров Последнее сообщение
Тема форума помогите решить задачу

По кругу размещено n шариков, занумерованных в произвольном порядке, n≥3. Они обходятся по...

- kemolife 27 21.09.2014 at 00:18 by kemolife
Тема форума Вопрос

Доброго времени суток. Попалась задачка по векторам. Найти такие m и n, при которых векторы...

1 / - GrandCube 37 20.09.2014 at 19:53 by GrandCube
Тема форума Неравенство

3 / - boroda33 116 14.09.2014 at 11:22 by Ian
Тема форума Математика. 11 класс
Доброго времени суток, форумчане!
Интересует такой вопрос: я всю школьную жизнь был лентяем,...
22 / - KrasPvP 1 211 13.09.2014 at 13:22 by folk
Тема форума неравенство с параметром

Здравствуйте! 

||x+2a|-3a|+||3x-a|+4a|-7x-24<=0

Найти все значения...

1 / - tata00tata 118 11.09.2014 at 16:56 by zam2
Теоретическая статья Общие приёмы решения уравнений

Решение уравнения

...

- adminus 4 696 18.08.2014 at 04:34 by adminus
Теоретическая статья Теория множеств

Теория множеств

Тео́рия мно́жеств — раздел...

- adminus 681 18.08.2014 at 04:34 by adminus
Теоретическая статья Системы уравнений и неравенств

Система уравнений

...
- adminus 855 18.08.2014 at 04:34 by adminus
Теоретическая статья Решение неравенств

Методы решения неравенств

В этом разделе на примере...

- adminus 459 18.08.2014 at 04:34 by adminus
Теоретическая статья Уравнение и его корни

Квадратное уравнение

...

- adminus 358 18.08.2014 at 04:34 by adminus
  • 373страниц:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
В этой группе сообщений нет.
  • 338страниц:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
Название темы Ответов Автор Просмотров Последнее сообщение
помогите решить задачу

По кругу размещено n шариков, занумерованных в произвольном порядке, n≥3. Они обходятся по...

- kemolife 27 21.09.2014 at 00:18 by kemolife
Вопрос

Доброго времени суток. Попалась задачка по векторам. Найти такие m и n, при которых векторы...

1 / - GrandCube 37 20.09.2014 at 19:53 by GrandCube
Неравенство

3 / - boroda33 116 14.09.2014 at 11:22 by Ian
Математика. 11 класс
Доброго времени суток, форумчане!
Интересует такой вопрос: я всю школьную жизнь был лентяем,...
22 / - KrasPvP 1 211 13.09.2014 at 13:22 by folk
неравенство с параметром

Здравствуйте! 

||x+2a|-3a|+||3x-a|+4a|-7x-24<=0

Найти все значения...

1 / - tata00tata 118 11.09.2014 at 16:56 by zam2
Учебные материалы для освежения памяти
Здравствуйте, форумчане-математики.

Посоветуйте литературу для изучения математики по...
3 / - b10s 720 14.08.2014 at 00:09 by ARRY
Как доказать что корень из 2-х иррациональное число?
Как доказать что ...
35 / - Александр Амелькин 1 159 13.08.2014 at 15:26 by bot
решения
Помогите решит уравнение спасибо!

779,72[(T/10)0.58-(T/9)0.58=88....
13 / - Медя 568 08.08.2014 at 17:17 by balans
дифференциал
доброго времени суток) помогите пожалуйста разобраться в понятии дифференциала, т.е. для чего он...
1 / - vicky 233 04.08.2014 at 06:42 by ARRY
LaTeX
Так как в вопросах, обсуждаемых на формумах Портала, используется достаточно много математической...
125 / - AV_77 125 113 02.08.2014 at 13:21 by NT
  • 338страниц:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

Неравенства с модулем

Неравенства с модулем

Основные способы решений неравенств с модулем во многом совпадают с методами решения аналогичных уравнений. Единственное отличие, пожалуй, связано с тем, что, решая неравенства с модулем (как, впрочем, и неравенства вообще), нужно очень внимательно совершать равносильные переходы и следить не только за тем, чтобы не приобрести новые решения, но и за тем, чтобы не потерять уже имеющиеся.

Стандартный путь решения неравенств с модулем заключается в том, что координатная прямая разбивается на промежутки (границами этих промежутков являются нули подмодульных выражений), а затем неравенство решается на каждом из промежутков.

Этот метод работает всегда. Правда, в отдельных случаях может быть затруднена его техническая реализация, например, очень тяжело или невозможно найти корни подмодульных выражений и пр. Однако, это сложности иного плана. Нужно понимать, что раскрытие модуля по определению неизменно приводит к цели. Конечно же, этот метод не является оптимальным: в условиях конкурсного экзамена важен не только результат, но и то время, которое потрачено на его получение.

Рассмотрим методы, не связанные с поиском нулей функций, стоящих под знаком модуля.

Рассмотрим неравенство Очевидно, что те x , для которых g  ( x ) < 0, не являются решениями. Значит, если x является решением, то для него g  ( x ) ≥ 0, и согласно геометрическому смыслу модуля, как расстоянию на координатной оси, данное неравенство равносильно системе Таким образом, имеем

Аналогично можно рассмотреть неравенство Неравенство выполнено для тех x , для которых g  ( x ) < 0 и функции f  ( x ) и g  ( x ) определены. Для тех x , для которых g  ( x ) ≥ 0, имеем равносильную совокупность


Заметим, что последняя совокупность является равносильной нашему неравенству и при g  ( x ) ≤ 0. В этом можно непосредственно убедиться, учтя g  ( x ) ≤ 0 и вспомнив определение знака совокупности.

Пример 1

Решите неравенство

Показать решение

Перейдём к равносильной совокупности.


Ответ.  


Как видно, в простых случаях особых преимуществ метод перехода к равносильной системе не имеет, но иногда его преимущества весьма заметны.

Пример 2

Решите неравенство

Показать решение

Как видно, найти значения x , при которых подмодульное выражение обращается в нуль, чрезвычайно затруднительно. Однако переход к равносильной системе значительно упрощает дело. Имеем:

Ответ.  


0 up down