Вход через социальные сети

Корни многочлена

Тип Название темы Ответов Автор Просмотров Последнее сообщение
scientist Naltrexone | Buy Uk


Looking for a naltrexone? Not a problem!

Guaranteed Worldwide...

- sprucewoodcheckmn 3 24.01.2017 at 19:59 by sprucewoodcheckmn
scientist Naltrexone | Buy Online Cheap


Looking for a naltrexone? Not a problem!

Guaranteed Worldwide...

- sprucewoodcheckmn 3 24.01.2017 at 08:51 by sprucewoodcheckmn
scientist Keppra | Order


Looking for a keppra? Not a problem!

Guaranteed Worldwide...

- sprucewoodcheckmn 6 24.01.2017 at 07:00 by sprucewoodcheckmn
scientist Zyban | No Prescription Overnight Shipping


Looking for a zyban? Not a problem!

Guaranteed Worldwide...

- enderpearlratioivc 18 21.01.2017 at 10:27 by enderpearlratioivc
scientist Kamagra | Buy In Vietnam


Looking for a kamagra? Not a problem!

Guaranteed Worldwide...

- enderpearlratioivc 21 20.01.2017 at 06:42 by enderpearlratioivc
scientist Differin | Buy Online Europe


Looking for a differin? Not a problem!

Guaranteed Worldwide...

- enderpearlratioivc 39 20.01.2017 at 02:08 by enderpearlratioivc
Тема форума помогите решать?

f(2-f(x))=6-4x  ,найти f(x)=ax+b
 

1 / - gelgelsema 79 19.01.2017 at 16:30 by grigoriy
scientist Grifulvin | Buy V Online


Looking for a grifulvin? Not a problem!

Guaranteed Worldwide...

- enderpearlratioivc 37 18.01.2017 at 15:15 by enderpearlratioivc
scientist Lotrisone | Buy Generic Online


Looking for a lotrisone? Not a problem!

Guaranteed Worldwide...

- enderpearlratioivc 33 18.01.2017 at 14:34 by enderpearlratioivc
scientist Desyrel | Order


Looking for a desyrel? Not a problem!

Guaranteed Worldwide...

- enderpearlratioivc 32 18.01.2017 at 12:01 by enderpearlratioivc
Тема форума Геометрия окружность HELP

Точки Р и Т принадлежат соответственно сторонам ВС и СД квадрата АВСД, причём ВР=ДТ и угол ВАР=...

- ssnnee 47 18.01.2017 at 11:43 by ssnnee
scientist Celebrex | Buy From Canada


Looking for a celebrex? Not a problem!

Guaranteed Worldwide...

- enderpearlratioivc 50 17.01.2017 at 22:58 by enderpearlratioivc
scientist Lipitor | Low Cost Medicine Check


Looking for a lipitor? Not a problem!

Guaranteed Worldwide...

- enderpearlratioivc 30 17.01.2017 at 22:10 by enderpearlratioivc
scientist Sumycin | Order Interactions


Looking for a sumycin? Not a problem!

Guaranteed Worldwide...

- enderpearlratioivc 38 17.01.2017 at 20:33 by enderpearlratioivc
scientist Citalopram | Buy In Uk


Looking for a citalopram? Not a problem!

Guaranteed Worldwide...

- enderpearlratioivc 47 16.01.2017 at 21:46 by enderpearlratioivc
scientist Neurontin | Order Without A Script


Looking for a neurontin? Not a problem!

Guaranteed Worldwide...

- enderpearlratioivc 93 16.01.2017 at 16:31 by enderpearlratioivc
scientist Z Code System | Buy Sports Betting System

Let me ask you this Do you want to follow a winning sports betting system but don't have...

- enderpearlratioivc 32 16.01.2017 at 13:54 by enderpearlratioivc
scientist Cardizem | Amex Cod Accepted Spain


Looking for a cardizem? Not a problem!

Guaranteed Worldwide...

- enderpearlratioivc 184 16.01.2017 at 03:52 by enderpearlratioivc
Тема форума Прошу помогите Геометрия 7 класс
1. Периметр треуг. ABC равен 107 см. Сторона АВ равна 42 см, а разность сторон АС и ВС равна 15 см...
1 / - ser-evtushenko2015 278 28.12.2016 at 20:55 by Albe
Тема форума Тригонометрия

Здравствуйте!

Подскажите пожалуйста, как начать:

...

1 / - Александр Малошенко 261 21.12.2016 at 21:07 by 12d3
Тема форума почему Г. Перельман постеснялся принять призовой миллион долларов

Институт  Клэя  заявил о семи «задачах  тысячелетия»  за решение которых обещает миллион...

1 / - boguslavka1 283 19.12.2016 at 12:22 by GEPIDIUM
Тема форума Известна точка пересечения диагоналей квадрата К (1,5;3,5) и уравнение одной из сторон х-4у+4=0 Помогите решить!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! хелп ми - kakveter02 237 06.12.2016 at 13:26 by kakveter02
Тема форума Помогите решить

Какую высоту имеет медный провод с площей поперечного перереза 0.1 мм2 если при напряжении 1.7...

1 / - davidgt9500 374 02.12.2016 at 11:31 by Таланов
Тема форума Разность двух величин

Здрасте всем. Тут в задании по электронике был расчёт операционного усилителя. Там есть 4-х...

14 / - GEPIDIUM 1 395 23.11.2016 at 10:34 by GEPIDIUM
Тема форума Найти "красивую последовательность концентрических сфер"

Имеется система концентрических сфер, главный признак которых – один общий центр. Сферы –...

4 / - kimmak2014 2 436 22.11.2016 at 10:37 by kimmak2014
  • 155страниц:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 140страниц:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
Название темы Ответов Автор Просмотров Последнее сообщение
помогите решать?

f(2-f(x))=6-4x  ,найти f(x)=ax+b
 

1 / - gelgelsema 79 19.01.2017 at 16:30 by grigoriy
Геометрия окружность HELP

Точки Р и Т принадлежат соответственно сторонам ВС и СД квадрата АВСД, причём ВР=ДТ и угол ВАР=...

- ssnnee 47 18.01.2017 at 11:43 by ssnnee
Прошу помогите Геометрия 7 класс
1. Периметр треуг. ABC равен 107 см. Сторона АВ равна 42 см, а разность сторон АС и ВС равна 15 см...
1 / - ser-evtushenko2015 278 28.12.2016 at 20:55 by Albe
Тригонометрия

Здравствуйте!

Подскажите пожалуйста, как начать:

...

1 / - Александр Малошенко 261 21.12.2016 at 21:07 by 12d3
почему Г. Перельман постеснялся принять призовой миллион долларов

Институт  Клэя  заявил о семи «задачах  тысячелетия»  за решение которых обещает миллион...

1 / - boguslavka1 283 19.12.2016 at 12:22 by GEPIDIUM
Известна точка пересечения диагоналей квадрата К (1,5;3,5) и уравнение одной из сторон х-4у+4=0 Помогите решить!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! хелп ми - kakveter02 237 06.12.2016 at 13:26 by kakveter02
Помогите решить

Какую высоту имеет медный провод с площей поперечного перереза 0.1 мм2 если при напряжении 1.7...

1 / - davidgt9500 374 02.12.2016 at 11:31 by Таланов
Разность двух величин

Здрасте всем. Тут в задании по электронике был расчёт операционного усилителя. Там есть 4-х...

14 / - GEPIDIUM 1 395 23.11.2016 at 10:34 by GEPIDIUM
Найти "красивую последовательность концентрических сфер"

Имеется система концентрических сфер, главный признак которых – один общий центр. Сферы –...

4 / - kimmak2014 2 436 22.11.2016 at 10:37 by kimmak2014
Доказать неравенство

Здраствуйте. Возникла у меня затыка в курсовой по рядам. Там в одной задаче я исследовала...

26 / - GEPIDIUM 2 896 12.11.2016 at 09:43 by ARRY
Выражение переменной из формулы

Добрый день товарищи форумчане! Поставлена задача выразить переменную из формулы и с этим...

16 / - dogd 1 715 25.10.2016 at 21:10 by Olelukoe
Составить математическую модель задачи
Есть задача
...
14 / - Ёрик 6 220 21.10.2016 at 20:26 by magammed-gasanov97
Помогите решить
Учитель размышляет: -Если я собиру по 75 руб с каждого ученика то не хватит 440 руб на поездку....
4 / - Natalie-2004 964 11.10.2016 at 00:04 by ARRY
Геометрия для поступающих в ВУЗ.

Диагонали прямоугольного четырёхугольника взаимно-перпендикулярны. Найдите площадь этого  ...

5 / - kpn65super9 1 283 04.10.2016 at 15:17 by losev.cergej
Логическая, может кому интересно типа 2+2

Вам завязали глаза. На столе лежат 13 монет 5 решкой и 8 орлом на ощупь различить их нельзя,...

3 / - losev.cergej 932 03.10.2016 at 23:00 by losev.cergej
Проверьте вычисление.

...

1 / - AAA1111 611 01.10.2016 at 03:14 by AAA1111
задача на вектора

Здравствуйте. Известно разложение вектора OD

OD=2OA+0,5ОВ-1,5ОС. Докажите, что точки A,...

2 / - tata00tata 854 27.09.2016 at 02:25 by zam2
Олимпиада

2+2=x 

Чему равен x?

2 / - hvosevrstislav 1 572 25.09.2016 at 15:02 by losev.cergej
Новые основы математики

«Свойства чисел на числовой оси.

Всякое положительное число и 0 больше...

5 / - piven 1 075 25.09.2016 at 14:04 by losev.cergej
Поясните с переводом единиц измерения.
0,1mm^{2} 
...
2 / - AAA1111 903 11.09.2016 at 13:37 by AAA1111
Легко найти площадь трапеции

Недавно сделала для себя открытие. Есть сайты, на которых можно на калькуляторе решить любую...

4 / - zav197816 1 795 28.08.2016 at 01:19 by losev.cergej
задача по комбинаторике

Здравствуйте. 

Задача. Сколько можно сотавить семизначных телефонных номеров из цифр 1 2...

1 / - tata00tata 790 27.08.2016 at 14:15 by ARRY
Помогите решить задачу по математике за 7 класс

3 груши весят как 4 яблока. Что тяжелее 4 груши или 5 яблок и на сколько?

14 / - eng001 2 382 16.08.2016 at 01:38 by Таланов
найти радиус ролика

как найти радиус ролика? 

на чертеже, вверху изображен сам ролик с неким радиусом(...

- moskito.cam 723 14.08.2016 at 17:59 by moskito.cam
Задание от начальства

Добрый день. Это меня на собеседовании спросили. А я и не смог ответить
Из пункта А в...

4 / - mymbamutumba 1 309 12.08.2016 at 02:37 by Самоед
  • 140страниц:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
18.08.2014, 04:16
adminus
0 up down

Корни многочлена

Корни многочлена

Как мы видели выше, методом выделения полного квадрата можно найти корни квадратного трехчлена. В случае многочленов высших степеней найти корни становится гораздо труднее, а иногда и просто невозможно. Попробуем это сделать там, где это достаточно просто.

Рассмотрим многочлен
где a 1 a 2, ...,  a n − целые числа, a n  ≠ 0.

Теорема о рациональных корнях многочлена

Если многочлен
с целыми коэффициентами имеет рациональный корень то число p является делителем числа (свободного члена), а число q является делителем числа (старшего коэффициента).

Доказательство
 

Действительно, если число является корнем многочлена то а именно:
Умножим обе части этого уравнения на получим:
Так как − целые числа, то в скобке стоит целое число. Значит, вся правая часть этого равенства делится на q , так как q входит в неё в качестве сомножителя. А значит и левая часть тождества делится на q , так как она равна правой. Число p не делится на q , так как иначе дробь была бы сократимой, значит и не делится на q . Следовательно, на q делится единственный из оставшихся сомножителей левой части, а именно Аналогично доказывается, что делится на p . Теорема доказана.

Замечание. Эта теорема фактически позволяет находить корни многочленов высших степеней в том случае, когда коэффициенты этих многочленов − целые числа, а корень − рациональное число. Теорему можно переформулировать так: если нам известно, что коэффициенты многочлена − целые числа, а корни его − рациональны, то эти рациональные корни могут быть только вида где p является делителем числа (свободного члена), а число q является делителем числа (старшего коэффициента).

Пусть все коэффициенты многочлена являются целыми числами, и пусть целое число a является корнем этого многочлена. Так как в этом случае то отсюда следует, что коэффициент делится на a .

Пример 1

Разложить на множители многочлен x 3  – 5 x 2  – 2 x  + 16.

Показать решение

Данный многочлен имеет целые коэффициенты. Если целое число является корнем этого многочлена, то оно является делителем числа 16. Таким образом, если у данного многочлена есть целые корни, то это могут быть только числа ±1; ±2; ±4; ±8; ±16. Непосредственной проверкой убеждаемся, что число 2 является корнем этого многочлена, то есть x 3  – 5 x 2  – 2 x  + 16 = ( x  – 2) Q ( x ), где Q ( x ) − многочлен второй степени. Следовательно, многочлен разлагается на множители, один из которых ( x  – 2). Для поиска вида многочлена Q ( x ) воспользуемся так называемой схемой Горнера . Основным преимуществом этого метода является компактность записи и возможность быстрого деления многочлена на двучлен. По сути, схема Горнера является другой формой записи метода группировки, хотя, в отличие от последнего, является совершенно ненаглядной. Ответ (разложение на множители) тут получается сам собой, и мы не видим самого процесса его получения. Мы не будем заниматься строгим обоснованием схемы Горнера, а лишь покажем, как она работает.

1 −5 −2 16 2 1 −3 −8 0 В прямоугольную таблицу 2 × ( n  + 2) , где n − степень многочлена, (см. рис.) в верхнюю строчку выписываются подряд коэффициенты многочлена (левый верхний угол при этом оставляют свободным). В нижний левый угол записывают число − корень многочлена (или число x 0, если мы хотим разделить на двучлен ( x  –  x 0 )), в нашем примере это число 2. Далее вся нижняя строчка таблицы заполняется по следующему правилу.

Во вторую клетку нижней строки «сносится» число из клетки над ней, то есть 1. Затем поступают так. Корень уравнения (число 2) умножают на последнее написанное число (1) и складывают результат с числом, которое стоит в верхнем ряду над следующей свободной клеткой, в нашем примере имеем:
2 ∙ 1 + (–5) = –3. Результат записывается в свободную клетку под тем числом, с которым только что производилось сложение, то есть под −5.

Далее корень 2 умножается на последнюю написанную цифру, то есть на −3, и складывается с числом, которое стоит в верхнем ряду над следующей свободной клеткой, то есть −2; имеем:
2 ∙ (–3) + (–2) = –8. Результат пишем в свободную клетку под −2. Далее поступаем аналогично:
2 ∙ (–8) + 16 = 0. В последней клетке (правый нижний угол), если нигде не совершено ошибки и 2 − действительно корень данного многочлена, должен получиться нуль. Это признак правильного решения. В общем случае в этой клетке оказывается остаток от деления исходного многочлена на ( x  – 2) (в нашем примере). У нас получился 0, следовательно, 2 − действительно корень этого многочлена.

Полученные числа 1, −3, −8 являются коэффициентами многочлена, который получается при делении исходного многочлена на x  – 2. Значит, результат деления:
1 ·  x 2  + (–3) x  + (–8) =  x 2  – 3 x  – 8. Степень многочлена, полученного в результате деления, всегда на 1 меньше, чем степень исходного. Итак:
x 3  – 5 x 2  – 2 x  + 16 = ( x  – 2)( x 2  – 3 x  – 8). Корни многочлена второй степени ищутся легко уже описанным выше способом (по формуле корней) и равны: и Окончательно:

Ответ.  


Пример 2

Разложить на множители многочлен x 4  + 5 x 3  – 7 x 2  – 5 x  + 6.

Показать решение

Данный многочлен имеет целые коэффициенты. Следовательно, если целое число является корнем этого многочлена, оно является делителем свободного члена, то есть числа 6. Таким образом, если у данного многочлена существуют целые корни, то это могут быть числа ±1; ±2; ±3; ±6.

Проверкой убеждаемся, что числа +1 и −1 являются корнями многочлена, таким образом:
x 4  + 5 x 3  – 7 x 2  – 5 x  + 6 = ( x  + 1)( x  – 1) Q  ( x ) = ( x 2  – 1) Q  ( x ), где Q  ( x ) − многочлен второй степени. Делим исходный многочлен на x 2  – 1 уголком:

1

Итак: x 4  + 5 x 3  – 7 x 2  – 5 x  + 6 = ( x 2  – 1)( x 2  + 5 x  – 6). По схеме Горнера нужно было бы выполнять два деления: на +1 и на −1, хотя, безусловно, при определённом навыке деление осуществляется с одинаковыми затратами времени, и какой метод избрать при делении − дело вкуса. Поэтому можно пользоваться всегда каким-то одним, наиболее понравившимся методом.


 

Говорят, что многочлен P  ( x делится на двучлен ( x  –  a ), где a − задано, если P  ( x ) можно представить в виде
P  ( x ) =  Q  ( x )( x  –  a ) +  r где Q  ( x ) − многочлен степени на 1 меньше, чем P  ( x ), а r − некоторое число, которое называется остатком от деления многочлена P  ( x ) на ( x  –  a ) . Если r  = 0, то говорят, что многочлен P  ( x ) делится на x  –  a без остатка.

Теорема Безу

Остаток от деления многочлена P  ( x ) на двучлен ( x a ) равен P ( a ), то есть
P  ( x ) =  Q  ( x )( x  –  a ) +  P  ( a ).

Следствие

Число a является корнем многочлена P  ( x ) тогда и только тогда, когда этот многочлен делится на ( x  –  a ) без остатка:
P  ( x ) =  Q  ( x )( x  –  a ), где Q  ( x ) – многочлен степени, на 1 меньшей, чем P  ( x ).

Доказательство
 

Необходимость. Если x  =  a − корень многочлена P  ( x ), то по определению корня имеем P  ( a ) = 0. По определению остатка имеем P  ( x ) =  Q  ( x )( x  –  a ) +  r , что при x  =  a имеет вид P  ( a ) =  r , но P  ( a ) = 0, следовательно, r  = 0, а значит, P  ( x ) =  Q  ( x )( x  –  a ) +  r  =  Q  ( x )( x  –  a ), то есть справедливо нужное представление.

Достаточность. Пусть P  ( x ) =  Q  ( x )( x  –  a ), тогда непосредственной подстановкой убеждаемся, что P  ( a ) = 0, что значит, что x  =  a − корень многочлена P  ( x ). Теорема доказана.