Вход через социальные сети

Корни многочлена

Тип Название темы Ответов Автор Просмотров Последнее сообщение
scientist Carafate | Order Online No Prescription


Looking for a carafate? Not a problem!

Guaranteed Worldwide...

- hallowedmantisdfy 9 20.01.2018 at 23:08 by hallowedmantisdfy
scientist Grifulvin | Price V Apotheke 5Mg


Looking for a grifulvin? Not a problem!

Guaranteed Worldwide...

- hallowedmantisdfy 26 20.01.2018 at 09:47 by hallowedmantisdfy
scientist Revia | Buy Without A Rx


Looking for a revia? Not a problem!

Guaranteed Worldwide...

- hallowedmantisdfy 10 19.01.2018 at 17:25 by hallowedmantisdfy
scientist Ambien | Mail Order


Looking for a ambien? Not a problem!

Guaranteed Worldwide...

- hallowedmantisdfy 15 18.01.2018 at 16:04 by hallowedmantisdfy
scientist Diclofenac | Where Can I Buy


Looking for a diclofenac? Not a problem!

Guaranteed Worldwide...

- hallowedmantisdfy 40 16.01.2018 at 20:39 by hallowedmantisdfy
scientist Toradol | Buy


Looking for a toradol? Not a problem!

Guaranteed Worldwide...

- hallowedmantisdfy 50 16.01.2018 at 15:29 by hallowedmantisdfy
scientist Reglan | Purchase For Cats


Looking for a reglan? Not a problem!

Guaranteed Worldwide...

- hallowedmantisdfy 42 16.01.2018 at 08:29 by hallowedmantisdfy
Тема форума тригонометрия

...

1 / - leonidzilb 268 28.12.2017 at 00:45 by grigoriy
Тема форума модуль вектора в криволин координатах
Здравствуйте!
как найти модуль вектора, через его компоненты в криволинейных координатах?...
6 / - skarden 13 339 25.12.2017 at 09:46 by alfield37
Тема форума Решительно пожалуйсто

В первом ведре в 4 раза больше воды чем ва втором,а в 3  ведре как во втором и первом вместе,...

11 / - chernyack.tatiana 1 636 08.12.2017 at 16:45 by grigoriy
Тема форума Добрый день, помогите решить задачу по математике за 5 клас)

Есть 49 коробок цветных карандашей. В коробках с одним количеством карандашей вмещается 228...

6 / - serkismog 1 202 10.10.2017 at 20:45 by blandux
Тема форума Нахождение координат центра окружности и конца дуги в 90 градусов. Помогите.

Дано: отрезок А(85;-20) В(-5;15)...

1 / - lexfromtver 1 283 30.06.2017 at 19:16 by zykov
Тема форума Найти координату третьей точки

Столкнулся в жизни с такой проблемой, как найти примерные координаты третьей точки, если...

10 / - theanton3399 3 251 30.06.2017 at 13:38 by vipakoz
Тема форума Математики не умеют логически вычитать из уменьшаемого

Автор темы, к сожалению,...
4 / - piven 2 029 27.06.2017 at 22:33 by piven
Тема форума Найти последнюю цифру числа.
Нужно найти последнюю цифру числа:
1. 3 в степени 1993.
2. 1993 в степени 1993.
...
13 / - Ellipsoid 32 858 30.05.2017 at 18:24 by Dredd
Тема форума Задачи c натуральными числами
Есть задача:

Доказать, что число делится на 11 тогда и только тогда, когда разность...
3 / - МУХ 4 906 30.05.2017 at 18:19 by echss01
Тема форума Решите пж задачу
№1Ковалок меди объёмом 18 куб. см сплавили с ковалком цинка объёмом 21 куб. см. Найдите массу 1 куб...
- darya.kryla 1 173 18.05.2017 at 20:28 by darya.kryla
Тема форума решение задач по геометрии

Помогите решить задачи:

1.Даны вершины треугольника АВС А(2;1),В(-1;-1),С(3;2).Составить...

- shea11 1 272 20.04.2017 at 19:47 by shea11
Тема форума Помоготе решить

В саду вишнёвых деревьев на 63 меньше, чем сливовых, а яблонь на 144 больше, чем слив. Сколько...

- Zvilkovskaya 1 332 18.04.2017 at 18:19 by Zvilkovskaya
Тема форума Помогите составить уравнение линии, для каждой точки которой расстояние до точки F(3;3) равно расстоянию до прямой у=-2 . Сделать чертеж

Помогите хелп!составить уравнение линии, для каждой точки которой расстояние до точки F(3;3)...

1 / - any_times 2 140 15.04.2017 at 13:35 by ARRY
Тема форума О доказательстве пятого постулата Евклида

Спешу сообщить - я доказал пятый постулат Евклида. Сегодня отправил доказательство известным...

19 / - viksan31 7 821 03.04.2017 at 12:50 by viksan31
Тема форума олимпийские задания

Задания олимпиад разных лет http://пятьколец.рф

- radrad 1 550 14.03.2017 at 20:34 by radrad
Тема форума Диагностическая работа 6 с5

Как доказать √(1953^200-4*1995^100) ирациональное число.

- dregonh 1 550 12.03.2017 at 16:09 by dregonh
Тема форума Помогите решить для 4 класса
Дополни решение задачи по действиям, с пояснениями. Вычисли и запиши ответ. Из двух городов...
26 / - xitraya.ya 8 860 09.03.2017 at 23:09 by Студентс
Тема форума Алгебра. 8 класс.

Подскажите, как решать квадратичные уравнения, никак не могу понять.
 

- mikhailova.280 1 678 02.03.2017 at 08:32 by mikhailova.280
  • 155страниц:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 141страниц:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
Название темы Ответов Автор Просмотров Последнее сообщение
тригонометрия

...

1 / - leonidzilb 268 28.12.2017 at 00:45 by grigoriy
модуль вектора в криволин координатах
Здравствуйте!
как найти модуль вектора, через его компоненты в криволинейных координатах?...
6 / - skarden 13 339 25.12.2017 at 09:46 by alfield37
Решительно пожалуйсто

В первом ведре в 4 раза больше воды чем ва втором,а в 3  ведре как во втором и первом вместе,...

11 / - chernyack.tatiana 1 636 08.12.2017 at 16:45 by grigoriy
Добрый день, помогите решить задачу по математике за 5 клас)

Есть 49 коробок цветных карандашей. В коробках с одним количеством карандашей вмещается 228...

6 / - serkismog 1 202 10.10.2017 at 20:45 by blandux
Нахождение координат центра окружности и конца дуги в 90 градусов. Помогите.

Дано: отрезок А(85;-20) В(-5;15)...

1 / - lexfromtver 1 283 30.06.2017 at 19:16 by zykov
Найти координату третьей точки

Столкнулся в жизни с такой проблемой, как найти примерные координаты третьей точки, если...

10 / - theanton3399 3 251 30.06.2017 at 13:38 by vipakoz
Математики не умеют логически вычитать из уменьшаемого

Автор темы, к сожалению,...
4 / - piven 2 029 27.06.2017 at 22:33 by piven
Найти последнюю цифру числа.
Нужно найти последнюю цифру числа:
1. 3 в степени 1993.
2. 1993 в степени 1993.
...
13 / - Ellipsoid 32 858 30.05.2017 at 18:24 by Dredd
Задачи c натуральными числами
Есть задача:

Доказать, что число делится на 11 тогда и только тогда, когда разность...
3 / - МУХ 4 906 30.05.2017 at 18:19 by echss01
Решите пж задачу
№1Ковалок меди объёмом 18 куб. см сплавили с ковалком цинка объёмом 21 куб. см. Найдите массу 1 куб...
- darya.kryla 1 173 18.05.2017 at 20:28 by darya.kryla
решение задач по геометрии

Помогите решить задачи:

1.Даны вершины треугольника АВС А(2;1),В(-1;-1),С(3;2).Составить...

- shea11 1 272 20.04.2017 at 19:47 by shea11
Помоготе решить

В саду вишнёвых деревьев на 63 меньше, чем сливовых, а яблонь на 144 больше, чем слив. Сколько...

- Zvilkovskaya 1 332 18.04.2017 at 18:19 by Zvilkovskaya
Помогите составить уравнение линии, для каждой точки которой расстояние до точки F(3;3) равно расстоянию до прямой у=-2 . Сделать чертеж

Помогите хелп!составить уравнение линии, для каждой точки которой расстояние до точки F(3;3)...

1 / - any_times 2 140 15.04.2017 at 13:35 by ARRY
О доказательстве пятого постулата Евклида

Спешу сообщить - я доказал пятый постулат Евклида. Сегодня отправил доказательство известным...

19 / - viksan31 7 821 03.04.2017 at 12:50 by viksan31
олимпийские задания

Задания олимпиад разных лет http://пятьколец.рф

- radrad 1 550 14.03.2017 at 20:34 by radrad
Диагностическая работа 6 с5

Как доказать √(1953^200-4*1995^100) ирациональное число.

- dregonh 1 550 12.03.2017 at 16:09 by dregonh
Помогите решить для 4 класса
Дополни решение задачи по действиям, с пояснениями. Вычисли и запиши ответ. Из двух городов...
26 / - xitraya.ya 8 860 09.03.2017 at 23:09 by Студентс
Алгебра. 8 класс.

Подскажите, как решать квадратичные уравнения, никак не могу понять.
 

- mikhailova.280 1 678 02.03.2017 at 08:32 by mikhailova.280
Уравнение нормали ПОМОГИТЕ

Задание: написать уравнение нормали к кривой y=e^(1-x) зная, что эта нормаль параллельна прямой...

2 / - Hidemi2013 2 671 08.02.2017 at 18:49 by ARRY
Помогите, 9класс

дана система 

х^2+(y-3)^2=9
y=[x]=a

2 / - abrosyalnr 2 633 07.02.2017 at 19:58 by GEPIDIUM
Пожалуйста , помогите найти интегралы!!!!!

Найти интегралы !

3 / - gennnevra 3 227 03.02.2017 at 17:44 by 12d3
Найти угол между плоскостями

В правильной четырёхугольной призме ABCDA1B1C1D1
cтороны основания равны 1, а боковые...

- kicul.tanya 1 860 28.01.2017 at 05:48 by kicul.tanya
помогите решать?

f(2-f(x))=6-4x  ,найти f(x)=ax+b
 

1 / - gelgelsema 2 265 19.01.2017 at 16:30 by grigoriy
Геометрия окружность HELP

Точки Р и Т принадлежат соответственно сторонам ВС и СД квадрата АВСД, причём ВР=ДТ и угол ВАР=...

- ssnnee 1 836 18.01.2017 at 11:43 by ssnnee
Прошу помогите Геометрия 7 класс
1. Периметр треуг. ABC равен 107 см. Сторона АВ равна 42 см, а разность сторон АС и ВС равна 15 см...
1 / - ser-evtushenko2015 2 793 28.12.2016 at 20:55 by Albe
  • 141страниц:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
18.08.2014, 04:16
adminus
0 up down

Корни многочлена

Корни многочлена

Как мы видели выше, методом выделения полного квадрата можно найти корни квадратного трехчлена. В случае многочленов высших степеней найти корни становится гораздо труднее, а иногда и просто невозможно. Попробуем это сделать там, где это достаточно просто.

Рассмотрим многочлен
где a 1 a 2, ...,  a n − целые числа, a n  ≠ 0.

Теорема о рациональных корнях многочлена

Если многочлен
с целыми коэффициентами имеет рациональный корень то число p является делителем числа (свободного члена), а число q является делителем числа (старшего коэффициента).

Доказательство
 

Действительно, если число является корнем многочлена то а именно:
Умножим обе части этого уравнения на получим:
Так как − целые числа, то в скобке стоит целое число. Значит, вся правая часть этого равенства делится на q , так как q входит в неё в качестве сомножителя. А значит и левая часть тождества делится на q , так как она равна правой. Число p не делится на q , так как иначе дробь была бы сократимой, значит и не делится на q . Следовательно, на q делится единственный из оставшихся сомножителей левой части, а именно Аналогично доказывается, что делится на p . Теорема доказана.

Замечание. Эта теорема фактически позволяет находить корни многочленов высших степеней в том случае, когда коэффициенты этих многочленов − целые числа, а корень − рациональное число. Теорему можно переформулировать так: если нам известно, что коэффициенты многочлена − целые числа, а корни его − рациональны, то эти рациональные корни могут быть только вида где p является делителем числа (свободного члена), а число q является делителем числа (старшего коэффициента).

Пусть все коэффициенты многочлена являются целыми числами, и пусть целое число a является корнем этого многочлена. Так как в этом случае то отсюда следует, что коэффициент делится на a .

Пример 1

Разложить на множители многочлен x 3  – 5 x 2  – 2 x  + 16.

Показать решение

Данный многочлен имеет целые коэффициенты. Если целое число является корнем этого многочлена, то оно является делителем числа 16. Таким образом, если у данного многочлена есть целые корни, то это могут быть только числа ±1; ±2; ±4; ±8; ±16. Непосредственной проверкой убеждаемся, что число 2 является корнем этого многочлена, то есть x 3  – 5 x 2  – 2 x  + 16 = ( x  – 2) Q ( x ), где Q ( x ) − многочлен второй степени. Следовательно, многочлен разлагается на множители, один из которых ( x  – 2). Для поиска вида многочлена Q ( x ) воспользуемся так называемой схемой Горнера . Основным преимуществом этого метода является компактность записи и возможность быстрого деления многочлена на двучлен. По сути, схема Горнера является другой формой записи метода группировки, хотя, в отличие от последнего, является совершенно ненаглядной. Ответ (разложение на множители) тут получается сам собой, и мы не видим самого процесса его получения. Мы не будем заниматься строгим обоснованием схемы Горнера, а лишь покажем, как она работает.

1 −5 −2 16 2 1 −3 −8 0 В прямоугольную таблицу 2 × ( n  + 2) , где n − степень многочлена, (см. рис.) в верхнюю строчку выписываются подряд коэффициенты многочлена (левый верхний угол при этом оставляют свободным). В нижний левый угол записывают число − корень многочлена (или число x 0, если мы хотим разделить на двучлен ( x  –  x 0 )), в нашем примере это число 2. Далее вся нижняя строчка таблицы заполняется по следующему правилу.

Во вторую клетку нижней строки «сносится» число из клетки над ней, то есть 1. Затем поступают так. Корень уравнения (число 2) умножают на последнее написанное число (1) и складывают результат с числом, которое стоит в верхнем ряду над следующей свободной клеткой, в нашем примере имеем:
2 ∙ 1 + (–5) = –3. Результат записывается в свободную клетку под тем числом, с которым только что производилось сложение, то есть под −5.

Далее корень 2 умножается на последнюю написанную цифру, то есть на −3, и складывается с числом, которое стоит в верхнем ряду над следующей свободной клеткой, то есть −2; имеем:
2 ∙ (–3) + (–2) = –8. Результат пишем в свободную клетку под −2. Далее поступаем аналогично:
2 ∙ (–8) + 16 = 0. В последней клетке (правый нижний угол), если нигде не совершено ошибки и 2 − действительно корень данного многочлена, должен получиться нуль. Это признак правильного решения. В общем случае в этой клетке оказывается остаток от деления исходного многочлена на ( x  – 2) (в нашем примере). У нас получился 0, следовательно, 2 − действительно корень этого многочлена.

Полученные числа 1, −3, −8 являются коэффициентами многочлена, который получается при делении исходного многочлена на x  – 2. Значит, результат деления:
1 ·  x 2  + (–3) x  + (–8) =  x 2  – 3 x  – 8. Степень многочлена, полученного в результате деления, всегда на 1 меньше, чем степень исходного. Итак:
x 3  – 5 x 2  – 2 x  + 16 = ( x  – 2)( x 2  – 3 x  – 8). Корни многочлена второй степени ищутся легко уже описанным выше способом (по формуле корней) и равны: и Окончательно:

Ответ.  


Пример 2

Разложить на множители многочлен x 4  + 5 x 3  – 7 x 2  – 5 x  + 6.

Показать решение

Данный многочлен имеет целые коэффициенты. Следовательно, если целое число является корнем этого многочлена, оно является делителем свободного члена, то есть числа 6. Таким образом, если у данного многочлена существуют целые корни, то это могут быть числа ±1; ±2; ±3; ±6.

Проверкой убеждаемся, что числа +1 и −1 являются корнями многочлена, таким образом:
x 4  + 5 x 3  – 7 x 2  – 5 x  + 6 = ( x  + 1)( x  – 1) Q  ( x ) = ( x 2  – 1) Q  ( x ), где Q  ( x ) − многочлен второй степени. Делим исходный многочлен на x 2  – 1 уголком:

1

Итак: x 4  + 5 x 3  – 7 x 2  – 5 x  + 6 = ( x 2  – 1)( x 2  + 5 x  – 6). По схеме Горнера нужно было бы выполнять два деления: на +1 и на −1, хотя, безусловно, при определённом навыке деление осуществляется с одинаковыми затратами времени, и какой метод избрать при делении − дело вкуса. Поэтому можно пользоваться всегда каким-то одним, наиболее понравившимся методом.


 

Говорят, что многочлен P  ( x делится на двучлен ( x  –  a ), где a − задано, если P  ( x ) можно представить в виде
P  ( x ) =  Q  ( x )( x  –  a ) +  r где Q  ( x ) − многочлен степени на 1 меньше, чем P  ( x ), а r − некоторое число, которое называется остатком от деления многочлена P  ( x ) на ( x  –  a ) . Если r  = 0, то говорят, что многочлен P  ( x ) делится на x  –  a без остатка.

Теорема Безу

Остаток от деления многочлена P  ( x ) на двучлен ( x a ) равен P ( a ), то есть
P  ( x ) =  Q  ( x )( x  –  a ) +  P  ( a ).

Следствие

Число a является корнем многочлена P  ( x ) тогда и только тогда, когда этот многочлен делится на ( x  –  a ) без остатка:
P  ( x ) =  Q  ( x )( x  –  a ), где Q  ( x ) – многочлен степени, на 1 меньшей, чем P  ( x ).

Доказательство
 

Необходимость. Если x  =  a − корень многочлена P  ( x ), то по определению корня имеем P  ( a ) = 0. По определению остатка имеем P  ( x ) =  Q  ( x )( x  –  a ) +  r , что при x  =  a имеет вид P  ( a ) =  r , но P  ( a ) = 0, следовательно, r  = 0, а значит, P  ( x ) =  Q  ( x )( x  –  a ) +  r  =  Q  ( x )( x  –  a ), то есть справедливо нужное представление.

Достаточность. Пусть P  ( x ) =  Q  ( x )( x  –  a ), тогда непосредственной подстановкой убеждаемся, что P  ( a ) = 0, что значит, что x  =  a − корень многочлена P  ( x ). Теорема доказана.