Вход через социальные сети

Иррациональные числа

Тип Название темы Ответов Автор Просмотров Последнее сообщение
scientist Erythromycin | Buy For Cats


Looking for a erythromycin? Not a problem!

Guaranteed Worldwide...

- featuresrawyw 2 27.05.2017 at 10:35 by featuresrawyw
scientist Cipralex | Purchase Withdrawal Symptoms


Looking for a cipralex? Not a problem!

Guaranteed Worldwide...

- leversdevioustwa 1 27.05.2017 at 09:31 by leversdevioustwa
scientist Cozaar | Purchase Generic


Looking for a cozaar? Not a problem!

Guaranteed Worldwide...

- leversdevioustwa 2 27.05.2017 at 08:19 by leversdevioustwa
scientist Celexa | Order Online


Looking for a celexa? Not a problem!

Guaranteed Worldwide...

- leversdevioustwa 3 27.05.2017 at 06:01 by leversdevioustwa
scientist Abilify | Buy Australia


Looking for a abilify? Not a problem!

Guaranteed Worldwide...

- featuresrawyw 1 27.05.2017 at 05:59 by featuresrawyw
scientist Ventolin | Buy Online Usa


Looking for a ventolin? Not a problem!

Guaranteed Worldwide...

- leversdevioustwa 9 25.05.2017 at 21:13 by leversdevioustwa
scientist Elavil | Buy Online Cheap


Looking for a elavil? Not a problem!

Guaranteed Worldwide...

- leversdevioustwa 10 25.05.2017 at 09:54 by leversdevioustwa
scientist Noroxin | Order Discontinued


Looking for a noroxin? Not a problem!

Guaranteed Worldwide...

- featuresrawyw 17 23.05.2017 at 12:33 by featuresrawyw
scientist Florinef | Buy Cheap


Looking for a florinef? Not a problem!

Guaranteed Worldwide...

- leversdevioustwa 32 22.05.2017 at 23:26 by leversdevioustwa
scientist Remeron | Buy Mirtazapine


Looking for a remeron? Not a problem!

Guaranteed Worldwide...

- featuresrawyw 22 22.05.2017 at 23:16 by featuresrawyw
scientist Zanaflex | Purchase


Looking for a zanaflex? Not a problem!

Guaranteed Worldwide...

- leversdevioustwa 42 22.05.2017 at 19:24 by leversdevioustwa
scientist Prednisolone | Purchase 5Mg Tablets


Looking for a prednisolone? Not a problem!

Guaranteed Worldwide...

- featuresrawyw 23 22.05.2017 at 19:23 by featuresrawyw
scientist Aspirin | Buy Malaysia


Looking for a aspirin? Not a problem!

Guaranteed Worldwide...

- leversdevioustwa 34 22.05.2017 at 13:34 by leversdevioustwa
scientist Dihydrocodeine | Purchase Online Uk


Looking for a dihydrocodeine? Not a problem!

Guaranteed...

- leversdevioustwa 35 22.05.2017 at 10:11 by leversdevioustwa
scientist Temovate | Purchase Generic


Looking for a temovate? Not a problem!

Guaranteed Worldwide...

- featuresrawyw 25 22.05.2017 at 10:10 by featuresrawyw
Тема форума Найти последнюю цифру числа.
Нужно найти последнюю цифру числа:
1. 3 в степени 1993.
2. 1993 в степени 1993.
...
9 / - Ellipsoid 24 805 21.05.2017 at 13:55 by GEPIDIUM
scientist Zestoretic | Order Drug


Looking for a zestoretic? Not a problem!

Guaranteed Worldwide...

- featuresrawyw 59 19.05.2017 at 19:01 by featuresrawyw
scientist Robaxin | Buy Canada


Looking for a robaxin? Not a problem!

Guaranteed Worldwide...

- featuresrawyw 56 19.05.2017 at 14:20 by featuresrawyw
Тема форума Решите пж задачу
№1Ковалок меди объёмом 18 куб. см сплавили с ковалком цинка объёмом 21 куб. см. Найдите массу 1 куб...
- darya.kryla 112 18.05.2017 at 20:28 by darya.kryla
scientist Celexa | Buy Uk


Looking for a celexa? Not a problem!

Guaranteed Worldwide...

- featuresrawyw 66 18.05.2017 at 06:28 by featuresrawyw
scientist Clindamycin | Order Online


Looking for a clindamycin? Not a problem!

Guaranteed Worldwide...

- featuresrawyw 92 18.05.2017 at 06:28 by featuresrawyw
scientist Cleocin | Buy Orlistat In Malaysia


Looking for a cleocin? Not a problem!

Guaranteed Worldwide...

- featuresrawyw 78 16.05.2017 at 16:18 by featuresrawyw
scientist Xanax | Buy Green Online


Looking for a xanax? Not a problem!

Guaranteed Worldwide...

- featuresrawyw 81 15.05.2017 at 19:25 by featuresrawyw
scientist Xanax | Buy Alternatives


Looking for a xanax? Not a problem!

Guaranteed Worldwide...

- featuresrawyw 101 14.05.2017 at 14:20 by featuresrawyw
scientist Ventolin | Buy Singapore


Looking for a ventolin? Not a problem!

Guaranteed Worldwide...

- featuresrawyw 105 14.05.2017 at 05:38 by featuresrawyw
  • 171страниц:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 141страниц:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
Название темы Ответов Автор Просмотров Последнее сообщение
Найти последнюю цифру числа.
Нужно найти последнюю цифру числа:
1. 3 в степени 1993.
2. 1993 в степени 1993.
...
9 / - Ellipsoid 24 805 21.05.2017 at 13:55 by GEPIDIUM
Решите пж задачу
№1Ковалок меди объёмом 18 куб. см сплавили с ковалком цинка объёмом 21 куб. см. Найдите массу 1 куб...
- darya.kryla 112 18.05.2017 at 20:28 by darya.kryla
решение задач по геометрии

Помогите решить задачи:

1.Даны вершины треугольника АВС А(2;1),В(-1;-1),С(3;2).Составить...

- shea11 257 20.04.2017 at 19:47 by shea11
Помоготе решить

В саду вишнёвых деревьев на 63 меньше, чем сливовых, а яблонь на 144 больше, чем слив. Сколько...

- Zvilkovskaya 269 18.04.2017 at 18:19 by Zvilkovskaya
Помогите составить уравнение линии, для каждой точки которой расстояние до точки F(3;3) равно расстоянию до прямой у=-2 . Сделать чертеж

Помогите хелп!составить уравнение линии, для каждой точки которой расстояние до точки F(3;3)...

1 / - any_times 480 15.04.2017 at 13:35 by ARRY
О доказательстве пятого постулата Евклида

Спешу сообщить - я доказал пятый постулат Евклида. Сегодня отправил доказательство известным...

19 / - viksan31 2 586 03.04.2017 at 12:50 by viksan31
олимпийские задания

Задания олимпиад разных лет http://пятьколец.рф

- radrad 508 14.03.2017 at 20:34 by radrad
Диагностическая работа 6 с5

Как доказать √(1953^200-4*1995^100) ирациональное число.

- dregonh 464 12.03.2017 at 16:09 by dregonh
Помогите решить для 4 класса
Дополни решение задачи по действиям, с пояснениями. Вычисли и запиши ответ. Из двух городов...
26 / - xitraya.ya 3 872 09.03.2017 at 23:09 by Студентс
Алгебра. 8 класс.

Подскажите, как решать квадратичные уравнения, никак не могу понять.
 

- mikhailova.280 620 02.03.2017 at 08:32 by mikhailova.280
Уравнение нормали ПОМОГИТЕ

Задание: написать уравнение нормали к кривой y=e^(1-x) зная, что эта нормаль параллельна прямой...

2 / - Hidemi2013 1 111 08.02.2017 at 18:49 by ARRY
Помогите, 9класс

дана система 

х^2+(y-3)^2=9
y=[x]=a

2 / - abrosyalnr 1 104 07.02.2017 at 19:58 by GEPIDIUM
Пожалуйста , помогите найти интегралы!!!!!

Найти интегралы !

3 / - gennnevra 1 371 03.02.2017 at 17:44 by 12d3
Найти угол между плоскостями

В правильной четырёхугольной призме ABCDA1B1C1D1
cтороны основания равны 1, а боковые...

- kicul.tanya 765 28.01.2017 at 05:48 by kicul.tanya
помогите решать?

f(2-f(x))=6-4x  ,найти f(x)=ax+b
 

1 / - gelgelsema 978 19.01.2017 at 16:30 by grigoriy
Геометрия окружность HELP

Точки Р и Т принадлежат соответственно сторонам ВС и СД квадрата АВСД, причём ВР=ДТ и угол ВАР=...

- ssnnee 747 18.01.2017 at 11:43 by ssnnee
Прошу помогите Геометрия 7 класс
1. Периметр треуг. ABC равен 107 см. Сторона АВ равна 42 см, а разность сторон АС и ВС равна 15 см...
1 / - ser-evtushenko2015 1 282 28.12.2016 at 20:55 by Albe
Тригонометрия

Здравствуйте!

Подскажите пожалуйста, как начать:

...

1 / - Александр Малошенко 1 299 21.12.2016 at 21:07 by 12d3
почему Г. Перельман постеснялся принять призовой миллион долларов

Институт  Клэя  заявил о семи «задачах  тысячелетия»  за решение которых обещает миллион...

1 / - boguslavka1 1 175 19.12.2016 at 12:22 by GEPIDIUM
Известна точка пересечения диагоналей квадрата К (1,5;3,5) и уравнение одной из сторон х-4у+4=0 Помогите решить!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! хелп ми - kakveter02 1 011 06.12.2016 at 13:26 by kakveter02
Помогите решить

Какую высоту имеет медный провод с площей поперечного перереза 0.1 мм2 если при напряжении 1.7...

1 / - davidgt9500 1 386 02.12.2016 at 11:31 by Таланов
Разность двух величин

Здрасте всем. Тут в задании по электронике был расчёт операционного усилителя. Там есть 4-х...

14 / - GEPIDIUM 4 166 23.11.2016 at 10:34 by GEPIDIUM
Найти "красивую последовательность концентрических сфер"

Имеется система концентрических сфер, главный признак которых – один общий центр. Сферы –...

4 / - kimmak2014 3 962 22.11.2016 at 10:37 by kimmak2014
Доказать неравенство

Здраствуйте. Возникла у меня затыка в курсовой по рядам. Там в одной задаче я исследовала...

26 / - GEPIDIUM 7 150 12.11.2016 at 09:43 by ARRY
Выражение переменной из формулы

Добрый день товарищи форумчане! Поставлена задача выразить переменную из формулы и с этим...

16 / - dogd 4 417 25.10.2016 at 21:10 by Olelukoe
  • 141страниц:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
18.08.2014, 04:15
adminus
0 up down

Иррациональные числа

Иррациональные числа

Оказывается, что для нужд самой математики как, впрочем, и для практики, уже введённых рациональных чисел не хватает. Исторически числа, отличные по своей природе от рациональных, впервые появились уже при желании вычислить диагональ квадрата по его стороне.

1
Рисунок 1.3.1.1

Покажем, что длина такой диагонали не может быть выражена рациональным числом. Рассмотрим квадрат со стороной, равной 1. Пусть длина его диагонали равна d . Тогда, по теореме Пифагора, имеем: то есть Предположим, что d – рациональное число. Тогда существуют такие числа что и дробь несократима. Получаем: Из этого равенства следует, что, так как правая его часть делится на 2, то и его левая часть делится на 2. Значит и число m делится на 2. Другими словами существует такое целое число что m  = 2 k . Но тогда Однако из последнего равенства аналогично следует, что число n делится на 2. Последнее обстоятельство приводит к противоречию, так как числа m и n не могут быть одновременно чётными (по предположению, дробь несократима). Значит, не существует такого рационального числа, которое бы выражало длину диагонали квадрата.

 

Числа, которые не являются рациональными, то есть не являются ни целыми, ни представимыми в виде дроби вида  , где m – целое число, а n – натуральное, называются иррациональными .

Из нашего примера следует, что такие числа существуют: длина диагонали квадрата со стороной 1 является именно таким числом. Аналогично можно доказать, что не существует рационального числа, квадрат которого равен 5, 7, 10, то есть числа являются иррациональными. Теперь вспомним, что любое рациональное число может быть представлено в виде периодической десятичной дроби и наоборот, любая десятичная периодическая дробь может быть представлена в виде рационального числа.

Любое иррациональное число можно записать в виде бесконечной непериодической дроби, и любая непериодическая дробь является иррациональным числом.

 

Множества рациональных и иррациональных чисел вместе составляют множество действительных чисел .

Каждому действительному числу отвечает точка на координатной прямой, и наоборот, каждая точка на координатной прямой соответствует действительному числу. Действительно, для любой точки координатной прямой достаточно найти расстояние до неё от начала координат, а потом поставить перед этим числом знак плюс (+), если точка располагается правее начала координат, и знак минус (–) – если левее.

 

Изученные множества чисел обозначаются следующим образом:

  • – множество натуральных чисел;
  • – множество неотрицательных целых чисел (расширенный ряд натуральных чисел);
  • – множество целых чисел;
  • – множество рациональных чисел;
  • – множество иррациональных чисел;
  • – множество действительных чисел.

Множество целых чисел содержится во множестве рациональных чисел которое, в свою очередь, является частью всего множества действительных чисел Эти отношения можно записать кратко в виде ,

 

Совершенно аналогично десятичным дробям вводятся правила действия над действительными числами.

Сложение. Сумма двух действительных чисел одного знака есть число того же знака. Модуль такой суммы равен сумме модулей слагаемых.

Пример 1

Вычислить (+2) + (+3).

Показать решение

(+2) + (+3) = (+5).

Ответ. –5.


Сумма двух действительных чисел разных знаков имеет тот же знак, что и большее по модулю слагаемое. Модуль суммы равен разности модулей большего и меньшего слагаемых.

Пример 2

Вычислить (+2) + (–3).

Показать решение

(+2) + (–3) = (–1).

Ответ. –1.


Вычитание. Чтобы вычесть из одного действительного числа другое действительное число, нужно к уменьшаемому прибавить число, противоположное вычитаемому.

Пример 3

Вычислить (+2) – (–3).

Показать решение

(+2) – (–3) = 2 + 3 = 5.

Ответ. +5.


Умножение и деление. Произведение (частное) двух действительных чисел одного знака есть число положительное. Произведение (частное) двух действительных чисел разных знаков есть число отрицательное. Модуль произведения (частного) двух действительных чисел равен произведению (частному) модулей этих чисел.

Пример 4

Вычислить (+2) ∙ (–3).

Показать решение

Ответ.  –6.

 

Арифметические операции над действительными числами обладают следующими свойствами ( основные законы алгебры ).

  1. a  +  b  =  b  +  a ( переместительный закон сложения ).
  2. ( a  +  b ) +  c  =  a  + ( b  +  c ) ( сочетательный закон сложения ).
  3. a  + 0 =  a ( свойство нуля ).
  4. a  + (– a ) = 0 ( свойство противоположного числа ).
  5. ab  =  ba ( переместительный закон умножения ).
  6. ab ( c ) =  a ( bc ) ( сочетательный закон ).
  7. a ( b  +  c ) =  ab  +  ac ( распределительный закон умножения относительно сложения ).
  8. a  · 1 =  a ( основное свойство единицы ).
  9. ( существование обратного числа ).

Сравнение действительных чисел производится совершенно аналогично сравнению рациональных чисел. А именно, говорят, что действительное число a больше другого действительного числа b , и обозначают этот факт так: a  >  b , если разность ( a  –  b ) – положительное действительное число. Говорят, что действительное число a меньше другого действительного числа b , и обозначают этот факт так: a  <  b , если разность ( a  –  b ) – отрицательное действительное число. На действительные числа совершенно аналогично переносятся понятия отношений ≤ и ≥. При этом числовые неравенства обладают следующими свойствами:

  1. Если a  >  b , то b  <  a .
  2. Если a  >  b и b  >  c , то a  >  c ( свойство транзитивности ).
  3. Если a  >  b , то a  +  c  >  b  +  c .
  4. Если a  >  b и c  > 0, то ac  >  bc .
  5. Если a  >  b и c  < 0, то ac  <  bc .
  6. Если a  >  b и c  >  d , то a  +  c  >  b  +  d .
  7. Если a b c d  > 0, причём a  >  b и c  >  d , то ac  >  bd .
  8. Если a  >  b и c  <  d , то a  –  c  >  b  –  d .
  9. Если то
  10. Если то для любого натурального числа n справедливо неравенство
 

Модулем действительного числа    a по определению называется само это число, если Если же a  < 0, то модулем такого числа называют число – a .

Кратко: