Перейти к содержимому.

Портал Естественных Наук

Разделы


Персональные инструменты
Вход


 

Обратная матрица

Новость: Открыт форум по нанотехнологии.

Обратная матрица


4.4. Обратная матрица

Рассмотрим квадратную матрицу

  .

Обозначим D =det A.

Квадратная матрица А называется невырожденной, или неособенной, если ее определитель отличен от нуля, и вырожденной, или особенной, если D = 0.

Квадратная матрица В называется обратной для квадратной матрицы А того же порядка, если их произведение А В = В А = Е, где Е - единичная матрица того же порядка, что и матрицы А и В.

Теорема . Для того, чтобы матрица А имела обратную, необходимо и достаточно, чтобы ее определитель был отличен от нуля.

Матрица, обратная матрице А, обозначается через А - 1 , так что В = А - 1 . Обратная матрица вычисляется по формуле

,                                               (4.5)

где А i j - алгебраические дополнения элементов a i j.

Вычисление обратной матрицы по формуле (4.5) для матриц высокого порядка очень трудоемко, поэтому на практике бывает удобно находить обратную матрицу с помощью метода элементарных преобразований (ЭП). Любую неособенную матрицу А путем ЭП только столбцов (или только строк) можно привести к единичной матрице Е. Если совершенные над матрицей А ЭП в том же порядке применить к единичной матрице Е, то в результате получится обратная матрица. Удобно совершать ЭП над матрицами А и Е одновременно, записывая обе матрицы рядом через черту. Отметим еще раз, что при отыскании канонического вида матрицы с целью нахождения ее ранга можно пользоваться преобразованиями строк и столбцов. Если нужно найти обратную матрицу, в процессе преобразований следует использовать только строки или только столбцы.

Пример 2.10 . Для матрицы  найти обратную.

Решение. Находим сначала детерминант матрицы А
    значит, обратная матрица существует и мы ее можем найти по формуле:   , где А i j (i,j=1,2,3) - алгебраические дополнения элементов а i j исходной матрицы.                  

                   

                  

                 

 откуда   .

Пример 2.11 . Методом элементарных преобразований найти обратную матрицу для матрицы: А= .

Решение. Приписываем к исходной матрице справа единичную матрицу того же порядка: . С помощью элементарных
преобразований столбцов приведем левую “половину” к единичной, совершая одновременно точно такие преобразования над правой матрицей.
Для этого поменяем местами первый и второй столбцы:
~ . К третьему столбцу прибавим первый, а ко второму - первый, умноженный на -2: . Из первого столбца вычтем удвоенный второй, а из третьего - умноженный на 6 второй; . Прибавим третий столбец к первому и второму: . Умножим последний столбец на -1: . Полученная справа от вертикальной черты квадратная матрица является обратной к данной матрице А. Итак,
        .




 

(c) Портал Естественных Наук

Портал Естественных Наук